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Why Reinvent the Wheel? 
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SuperSim: Features and Attributes 

– Fast event-driven simulation 

– Only model things that change 

 

– Single threaded (really is this a feature?) 

– Easy to use “run to completion” of each event. 
– Simulations achieve 50k to 5M events per second. 

 

– Source code: 

– ~40,000 lines of code 

– ~400 source/header files 

– 10+ external libraries 

– Supported by many tools 
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“If a simulator already does what you want it to do, 
you're most likely asking the wrong questions.” 
-Professor Christos Kozyrakis (Stanford CS/EE) 



Settings and Configuration 

– Extended JSON to configure a simulation 

– Command line configuration modifiers 

– Hierarchical nature of JSON matches the 
hierarchical structure of simulation: 
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$ supersim myconfig.json \ 

> network.router.architecture=string=output_queued \ 

> network.levels=uint=4 

"network": { 

    "topology": "folded_clos", 

    "levels": 3, 

    "radix": 6, 

    "protocol_classes": [{ 

        "num_vcs": 2, 

        "routing": { 

          "algorithm": "common_ancestor", 

          "latency": 1,  // cycles 

          "least_common_ancestor": true, 

          "mode": "port", 

          "adaptive": false }}], 

    "router": { 

      "architecture": "input_queued", 

      "input_queue_depth": 100, 

      "output_queue_depth": 164, 

      "crossbar": { "latency": 8  // cycles }, 

      "vc_scheduler": { 

        "allocator": { 

          "type": "rc_separable", 

          "slip_latch": true, 

          "iterations": 2, 

          "resource_arbiter": { "type": "lslp" }, 

          "client_arbiter": { "type": "lslp" } 

        }}, 

    }, 



Smart Object Factories 

– Factories with zero-modify module inclusion 

– New model files can just be dropped in. 

– No code changes required to the code base. 
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registerWithFactory() 

#include "traffic/continuous/LoopbackCTP.h"  

#include <factory/Factory.h>  

  

LoopbackCTP::LoopbackCTP( 

    const std::string& _name, const Component* _parent,  

    u32 _numTerminals, u32 _self, Json::Value _settings) 

    : ContinuousTrafficPattern( 

          _name, _parent, _numTerminals, _self, _settings) {} 

  

LoopbackCTP::~LoopbackCTP() {} 

  

u32 LoopbackCTP::nextDestination() { 

  return self_; 

} 

  

registerWithFactory( 

    "loopback", ContinuousTrafficPattern, 

    LoopbackCTP, CONTINUOUSTRAFFICPATTERN_ARGS); 



Designed for Architectural Exploration and Validation 

Use realistic architectural models 

• Router pipelines 

• Routing algorithms 

• Credit management 

• Congestion detection 
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SuperSim Structure 
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Simulator Core 
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Simulator Architecture 
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Multi-Application Workload Example 
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– Explore transient analysis of adaptive routing  

– “Blast” application running steady state traffic 

– “Pulse” application generates a temporary 
disturbance with a batch of traffic 
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Network Topologies (not trying to cover the whole space) 

Real Topologies 

– Torus 

– Oblivious routing 

– Folded-Clos 

– Oblivious and adaptive routing 

– HyperX 

– Can generate all HyperCubes and Flattened 
Butterflies 

– Oblivious and adaptive (to be released soon) routing 

– Dragonfly 

– Oblivious and adaptive routing 

– SlimFly (to be released soon) 

– Oblivious and adaptive routing 

Testing Topologies 

– Uno 

– A single router 

– ParkingLot 

– A cascade of routers to stress bandwidth fairness 
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Router Architectures (definitely not covering the whole space) 
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VCs, RCs, PCs, and TCs 

–Traffic Classes (TCs) 

–Protocol Classes (PCs) 

–Routing Classes (RCs) 

–Virtual Channels (VCs) 
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Simulation Experiments 
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Latent Congestion Sensing 

High-radix problem – many input ports bombard a 
seemly good output port 

Congestion latency – the time it takes for the input 
ports to see the congestion changes on the output 
ports 
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Parameter  Value 

Network topology  3-level folded-Clos, 4096 terminals  

Network channel latency  50 ns (i.e., 10 meter cables)  

Routing algorithm  adaptive uprouting  

Router radix  32 ports  

Router architecture  output-queued (OQ)  

Frequency speedup  1x (i.e., none)  

Number of VCs  1 VC  

Input buffer size  150 flits  

Output buffer size  infinite or 64 flits  

Router core latency  50 ns queue-to-queue  

Message size  1 flit  

Traffic pattern  uniform random to root  

Infinite output buffers 

64-flit output buffers 



Congestion Credit Accounting 
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– Use UGAL routing, test different credit account 
mechanisms: 

– Output, downstream, output-and-downstream 

– VC, port 

Parameter  Value 

Network topology  1D flattened butterfly, 32 routers, 1024 terminals  

Network channel latency  50 ns (i.e., 10 meter cables)  

Routing algorithm  UGAL  

Router radix  63 ports  

Router architecture  input-output-queued (IOQ)  

Frequency speedup  2x  

Number of VCs  2 VCs  

Input buffer size  128 flits  

Output buffer size  256 flits  

Router core latency  50 ns main crossbar latency  

Message size  1 flit  

Traffic pattern  uniform random, bit complement  

Uniform random traffic 

Bit complement traffic 



Flow Control Techniques 

– Flit-buffer flow control (FB) 

– Packet-buffer flow control (PB) 

– Winner-take-all flow control (WTA) 
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Parameter  Value 

Network topology  4D torus 8x8x8x8, 4096 terminals 

Network channel latency  5 ns (i.e., 1 meter cables) 

Routing algorithm  dimension order routing 

Router radix  9 ports 

Router architecture  input-queued (IQ) 

Frequency speedup  1x (i.e., none) 

Number of VCs  2,4,8 VCs 

Input buffer size  128 flits 

Output buffer size  n/a 

Router core latency  25 ns main crossbar latency 

Message size  1,2,4,8,16,32 flits 

Traffic pattern  uniform random 

2 VCs 

8 VCs 



Accompanying Tools 
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Simulation Pipeline 

1. Configure 

– Create the simulation configurations needed for the 
experiment 

2. Simulate 

– Run the simulations using the configurations 

3. Parse 

– Parse the results of the simulation outputs into the format 
needed in the remaining steps 

4. Analyze 

– Analyze the parsed results from simulation to create 
desired statistics 

5. Plot 

– Generate plots of analysis data 

6. View 

– View the analyzed and plotted results 
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Taskrun 

– A Python package for declaring tasks and automated execution 

– Generic task API supports: 

– Function tasks – executed as a Python function callback 

– Process tasks – locally executed command 

– Cluster tasks – a remotely executed command via a cluster scheduler 
(e.g., PBS, LSF, Slurm, etc.) 

– Your next big idea… 

– Resource management (e.g., memory, CPUs, etc.) 

– Dependencies and conditional execution (i.e., like a Makefile) 

 

 

* Not a tool specific to SuperSim 
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SSParse 

– SuperSim outputs a file containing information for all traffic from the “sampling” window (e.g., *.mpf). 

– SSParse parses this file, run analyses, and prepares data sets for plotting 

– SSParse exposes a filtering API to only view the information you care about 

– Ex: “+app=1” – only parses data from application 1 

– Ex: “-send=450-890” – parses data not sent between time 450 and 890 
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SSPlot 
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Name Description # of Sims 

Time-Latency-Scatter Load vs. latency scatter 1 

Latency-PDF Latency probability density function 1 

Latency-CDF Latency cumulative distribution function 1 

Latency-Percentile Latency percentiles (inverted logarithmic CDF) 1 

Time-Latency Time vs. latency at all distributions 1 

Time-Average-Hops Time vs. average hops 1 

Time-Percent-Minimal Time vs. minimal and non-minimal percentages 1 

Load-Latency Load vs. latency at all distributions 1 sweep 

Load-Rate Offered rate vs. delivered rate (min, mean, max) 1 sweep 

Load-Rate-Percent Offered rate vs. delivered rate (total, minimal, non-minimal) 1 sweep 

Load-Average-Hops Load vs. average hops 1 sweep 

Load-Percent-Minimal Load vs. minimal and non-minimal percentages 1 sweep 

Load-Latency-Compare Load vs. latency across multiple sweeps N sweeps 



SSPlot: Time-Latency-Scatter  
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Load vs. latency scatter 

– This is the result of a single 
simulation 



SSPlot: Latency-PDF 
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Latency probability density 
function 

– This is the result of a single 
simulation 



SSPlot: Latency-CDF 
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Latency cumulative distribution 
function 

– This is the result of a single 
simulation 



SSPlot: Latency-Percentile 
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Latency percentiles (inverted 
logarithmic CDF) 

– This is the result of a single 
simulation 



SSPlot: Time-Average-Hops 
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Time vs. average hops 

– This is the result of a single 
simulation 

– In this simulation there are two 
applications. Application 0 sends 
uniform random traffic at 10% the 
whole time. Application 1 sends bit 
complement traffic (adversarial) in 
a pulse starting at time ~35,000 

– These results show the traffic only 
for Application 0 

 



SSPlot: Time-Percent-Minimal 
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Time vs. minimal and non-minimal 
percentages 

– This is the result of a single 
simulation 

– In this simulation there are two 
applications. Application 0 sends 
uniform random traffic at 10% the 
whole time. Application 1 sends bit 
complement traffic (adversarial) in 
a pulse starting at time ~35,000 

– These results show the traffic only 
for Application 0 

 



SSPlot: Load-Latency 
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Load vs. latency at all 
distributions 

– This is the result of a sweep of 
simulations across injection rate 

– This simulation is an application 
sending uniform random traffic and 
randomly sizes messages 



SSPlot: Load-Latency-Compare 
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Load vs. latency across multiple 
sweeps 

– This is the result of many sweeps 
of simulations across injection rate 
(one sweep for “RR” and one for 
“AGE”) 

– This plot is like the Load-Latency 
plot but compares across multiple 
sweeps 

– This particular setup shows 
median latency (any latency 
distribution can be chosen) 



SSPlot: Load-Rate 
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Offered rate vs. delivered rate 
(min, mean, max) 

– This is the result of a sweep of 
simulations across injection rate 

– This simulation is an application 
sending traffic over a torus 
network that stresses the bisection 

– At 65% injection rate, the network 
becomes saturated. Severe 
bandwidth unfairness occurs due 
to round-robin arbitration 



SSSweep 

– SSSweep automates the entire simulation pipeline process 

– Users define independent simulation variables and corresponding functions to apply the variable 
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algs = ['oblivious', 'adaptive'] 

  

def set_alg(alg, config): 

 return ('network.protocol_classes[0].routing.adaptive=bool={}' 

         .format('true' if alg == 'adaptive' else 'false')) 

  

sweeper.add_variable('Routing Algorithm', 'RA', algs, set_alg) 

  

– Users define the type of plots they’d like 

– SSSweep creates all configurations and uses Taskrun to run all tasks 

– SSSweep generates a static HTML/CSS/Javscript web site for plot viewing 



SuperSim: Extensible Flit-Level Simulation of 
Large-Scale Interconnection Networks  
 www.github.com/hewlettpackard/supersim 
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http://www.github.com/hewlettpackard/supersim


Backup Slides 
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Focus on Real Issues of Large-Scale Networks 

Analyze latency 
distributions rather than 
just average latency 
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SSParse: Transient Tool 

– SSParse includes a wrapper tool that uses the main SSParse executable to generate a transient analysis 
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SSPlot: Time-Latency 
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Time vs. latency at all 
distributions 

– This is the result of a single 
simulation 

– In this simulation there are two 
applications. Application 0 sends 
uniform random traffic at 10% the 
whole time. Application 1 sends bit 
complement traffic (adversarial) in 
a pulse starting at time ~35,000 

– These results show the traffic only 
for Application 0 



SSPlot: Load-Rate-Percent 
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Offered rate vs. delivered rate 
(total, minimal, non-minimal) 

– This is the result of a sweep of 
simulations across injection rate 

– This simulation is an application 
sending uniform random traffic and 
randomly sizes messages 



SSPlot: Load-Average-Hops 
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Load vs. average hops 

– This is the result of a sweep of 
simulations across injection rate 

– This simulation is an application 
sending uniform random traffic and 
randomly sizes messages 



SSPlot: Load-Percent-Minimal 
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Load vs. minimal and non-
minimal percentages 

– This is the result of a sweep of 
simulations across injection rate 

– This simulation is an application 
sending uniform random traffic and 
randomly sizes messages 


