
Extensible Flit-Level
Simulation of Large-Scale
Interconnection Networks
Nic McDonald, Adriana Flores, Al Davis,
Mikhail Isaev, John Kim, Doug Gibson

Why Reinvent the Wheel?

2

SuperSim: Features and Attributes

– Fast event-driven simulation

– Only model things that change

– Single threaded (really is this a feature?)

– Easy to use “run to completion” of each event.
– Simulations achieve 50k to 5M events per second.

– Source code:

– ~40,000 lines of code

– ~400 source/header files

– 10+ external libraries

– Supported by many tools

3

“If a simulator already does what you want it to do,
you're most likely asking the wrong questions.”
-Professor Christos Kozyrakis (Stanford CS/EE)

Settings and Configuration

– Extended JSON to configure a simulation

– Command line configuration modifiers

– Hierarchical nature of JSON matches the
hierarchical structure of simulation:

4

$ supersim myconfig.json \

> network.router.architecture=string=output_queued \

> network.levels=uint=4

"network": {

 "topology": "folded_clos",

 "levels": 3,

 "radix": 6,

 "protocol_classes": [{

 "num_vcs": 2,

 "routing": {

 "algorithm": "common_ancestor",

 "latency": 1, // cycles

 "least_common_ancestor": true,

 "mode": "port",

 "adaptive": false }}],

 "router": {

 "architecture": "input_queued",

 "input_queue_depth": 100,

 "output_queue_depth": 164,

 "crossbar": { "latency": 8 // cycles },

 "vc_scheduler": {

 "allocator": {

 "type": "rc_separable",

 "slip_latch": true,

 "iterations": 2,

 "resource_arbiter": { "type": "lslp" },

 "client_arbiter": { "type": "lslp" }

 }},

 },

Smart Object Factories

– Factories with zero-modify module inclusion

– New model files can just be dropped in.

– No code changes required to the code base.

5

registerWithFactory()

#include "traffic/continuous/LoopbackCTP.h"

#include <factory/Factory.h>

LoopbackCTP::LoopbackCTP(

 const std::string& _name, const Component* _parent,

 u32 _numTerminals, u32 _self, Json::Value _settings)

 : ContinuousTrafficPattern(

 _name, _parent, _numTerminals, _self, _settings) {}

LoopbackCTP::~LoopbackCTP() {}

u32 LoopbackCTP::nextDestination() {

 return self_;

}

registerWithFactory(

 "loopback", ContinuousTrafficPattern,

 LoopbackCTP, CONTINUOUSTRAFFICPATTERN_ARGS);

Designed for Architectural Exploration and Validation

Use realistic architectural models

• Router pipelines

• Routing algorithms

• Credit management

• Congestion detection

6

SuperSim Structure

7

Simulator Core

8

0 1 2 3

1 2 3 1 2 3 1 2 3 1

Ticks Epsilons

Simulator

Priority

Queue

Component

A

Component

B

Component

CExecuter

Clock A

Clock B

Tick 0

Eps 0 Eps 1 Eps N

Tick 1

Eps 0 Eps 1 Eps N Eps 0

Time

Simulator Architecture

9

App 0

App 1

Workload

Sampling

Warming Generating Finishing Draining

Time

NetworkWorkload

Application

Terminal

Application

Application

Interface

Interface

Interface Router

Router
Terminal

Terminal

Terminal

Terminal

Terminal

Terminal

Terminal

Terminal

Router

Multi-Application Workload Example

10

– Explore transient analysis of adaptive routing

– “Blast” application running steady state traffic

– “Pulse” application generates a temporary
disturbance with a batch of traffic

App 0

App 1

Workload

Sampling

Warming Generating Finishing Draining

Time

Network Topologies (not trying to cover the whole space)

Real Topologies

– Torus

– Oblivious routing

– Folded-Clos

– Oblivious and adaptive routing

– HyperX

– Can generate all HyperCubes and Flattened
Butterflies

– Oblivious and adaptive (to be released soon) routing

– Dragonfly

– Oblivious and adaptive routing

– SlimFly (to be released soon)

– Oblivious and adaptive routing

Testing Topologies

– Uno

– A single router

– ParkingLot

– A cascade of routers to stress bandwidth fairness

11

Router Architectures (definitely not covering the whole space)

12

Q R V S

Q R V S

Q R V S

Q R V S

Q R V S

Q R V S

Q R V S

Q R V S

Q R V S

Crossbar

Q

Q

Q

Crossbar

Scheduler

VC

Scheduler
Congestion Sensor

Q R V S

Q R V S

Q R V S

Q R V S

Q R V S

Q R V S

Crossbar

Crossbar

Scheduler

VC

Scheduler
Congestion Sensor

Q

Q

Q

S

S

S
Crossbar

Crossbar

Scheduler

Q R V S Q S

Q R V S

Q R V S

Q R V S

Q

Q

Q

S

S

S
Crossbar

Crossbar

Scheduler

Q R V S Q S

Q R V S

Q R V S

Q R V S

Q

Q

Q

S

S

S
Crossbar

Crossbar

Scheduler

Q R V S Q S

R Q

Q

Q

S

S

S
Crossbar

Crossbar

Scheduler

Q S

Congestion

Sensor

Q

Q

Q

S

S

S
Crossbar

Crossbar

Scheduler

Q S

Q

Q

Q

S

S

S
Crossbar

Crossbar

Scheduler

Q S

R

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

R

 Q
 Q
 Q
 Q

 Q
 Q
 Q
 Q

 Q
 Q
 Q
 Q

Q

Q

Q

Q

R

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

 Q
 Q
 Q
 Q

 Q
 Q
 Q
 Q

 Q
 Q
 Q
 Q

R

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

 Q
 Q
 Q
 Q

 Q
 Q
 Q
 Q

 Q
 Q
 Q
 Q

R

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

 Q
 Q
 Q
 Q

 Q
 Q
 Q
 Q

 Q
 Q
 Q
 Q

R

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

 Q
 Q
 Q
 Q

 Q
 Q
 Q
 Q

 Q
 Q
 Q
 Q

Q

Q

Q

Q

R

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

 Q
 Q
 Q
 Q

 Q
 Q
 Q
 Q

 Q
 Q
 Q
 Q

R

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

 Q
 Q
 Q
 Q

 Q
 Q
 Q
 Q

 Q
 Q
 Q
 Q

R

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

 Q
 Q
 Q
 Q

 Q
 Q
 Q
 Q

 Q
 Q
 Q
 Q

R

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

 Q
 Q
 Q
 Q

 Q
 Q
 Q
 Q

 Q
 Q
 Q
 QR

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

 Q
 Q
 Q
 Q

 Q
 Q
 Q
 Q

 Q
 Q
 Q
 Q

Q

Q

Q

Q

Input Queued

Input/Output Queued

Output Queued

VCs, RCs, PCs, and TCs

–Traffic Classes (TCs)

–Protocol Classes (PCs)

–Routing Classes (RCs)

–Virtual Channels (VCs)

13

VC 0

VC 1

VC 2

VC 3

VC 4

VC 5

VC 6

VC 7

VC 8

VC 9

VC 10

VC 11

VC 12

VC 13

VC 14

VC 15

VC 16

VC 17

VC 18

VC 19

VC 20

VC 21

VC 22

VC 23

VC 24

VC 25

VC 26

VC 27

VC 28

VC 29

VC 30

VC 31

Traffic Class 2

Traffic Class 0

Protocol Class 4

TC2 Requests

DOAL

Protocol Class 0

TC0 Requests

VDAL

Protocol Class 5

TC2 Responses

DOAL

Routing Class 16 – DOAL min hops

Routing Class 17 – DOAL deroute hops

Routing Class 14 – DOAL min hops

Routing Class 15 – DOAL deroute hops

Routing Class 0 – VDAL hop 0

Routing Class 1 – VDAL hop 1

Routing Class 2 – VDAL hop 2

Routing Class 12 – DOR

Routing Class 13 – DOR

Traffic Class 1

Protocol Class 2

TC1 Requests

DOR

Protocol Class 3

TC1 Responses

DOR

Routing Class 3 – VDAL hop 3

Routing Class 4 – VDAL hop 4

Routing Class 5 – VDAL hop 5

Routing Class 6 – VDAL hop 0

Routing Class 7 – VDAL hop 1

Routing Class 8 – VDAL hop 2

Routing Class 9 – VDAL hop 3

Routing Class 10 – VDAL hop 4

Routing Class 11 – VDAL hop 5

Protocol Class 1

TC0 Responses

VDAL

Simulation Experiments

14

Latent Congestion Sensing

High-radix problem – many input ports bombard a
seemly good output port

Congestion latency – the time it takes for the input
ports to see the congestion changes on the output
ports

15

Parameter Value

Network topology 3-level folded-Clos, 4096 terminals

Network channel latency 50 ns (i.e., 10 meter cables)

Routing algorithm adaptive uprouting

Router radix 32 ports

Router architecture output-queued (OQ)

Frequency speedup 1x (i.e., none)

Number of VCs 1 VC

Input buffer size 150 flits

Output buffer size infinite or 64 flits

Router core latency 50 ns queue-to-queue

Message size 1 flit

Traffic pattern uniform random to root

Infinite output buffers

64-flit output buffers

Congestion Credit Accounting

16

– Use UGAL routing, test different credit account
mechanisms:

– Output, downstream, output-and-downstream

– VC, port

Parameter Value

Network topology 1D flattened butterfly, 32 routers, 1024 terminals

Network channel latency 50 ns (i.e., 10 meter cables)

Routing algorithm UGAL

Router radix 63 ports

Router architecture input-output-queued (IOQ)

Frequency speedup 2x

Number of VCs 2 VCs

Input buffer size 128 flits

Output buffer size 256 flits

Router core latency 50 ns main crossbar latency

Message size 1 flit

Traffic pattern uniform random, bit complement

Uniform random traffic

Bit complement traffic

Flow Control Techniques

– Flit-buffer flow control (FB)

– Packet-buffer flow control (PB)

– Winner-take-all flow control (WTA)

17

Parameter Value

Network topology 4D torus 8x8x8x8, 4096 terminals

Network channel latency 5 ns (i.e., 1 meter cables)

Routing algorithm dimension order routing

Router radix 9 ports

Router architecture input-queued (IQ)

Frequency speedup 1x (i.e., none)

Number of VCs 2,4,8 VCs

Input buffer size 128 flits

Output buffer size n/a

Router core latency 25 ns main crossbar latency

Message size 1,2,4,8,16,32 flits

Traffic pattern uniform random

2 VCs

8 VCs

Accompanying Tools

18

Simulation Pipeline

1. Configure

– Create the simulation configurations needed for the
experiment

2. Simulate

– Run the simulations using the configurations

3. Parse

– Parse the results of the simulation outputs into the format
needed in the remaining steps

4. Analyze

– Analyze the parsed results from simulation to create
desired statistics

5. Plot

– Generate plots of analysis data

6. View

– View the analyzed and plotted results

19

Sim Parse Plot

Plot

Sim Parse Plot

Sim Parse Plot

Sim Parse Plot

Plot

Sim Parse Plot

Sim Parse Plot

Sim Parse Plot

Sim Parse Plot

Plot Plot

Plot

Plot

Plot

This can easily turn
into 10s of 1000s
of command line

operations!!!

Taskrun

– A Python package for declaring tasks and automated execution

– Generic task API supports:

– Function tasks – executed as a Python function callback

– Process tasks – locally executed command

– Cluster tasks – a remotely executed command via a cluster scheduler
(e.g., PBS, LSF, Slurm, etc.)

– Your next big idea…

– Resource management (e.g., memory, CPUs, etc.)

– Dependencies and conditional execution (i.e., like a Makefile)

* Not a tool specific to SuperSim

20

Sim Parse Plot

Plot

Sim Parse Plot

Sim Parse Plot

Sim Parse Plot

Plot

Sim Parse Plot

Sim Parse Plot

Sim Parse Plot

Sim Parse Plot

Plot Plot

Plot

Plot

Plot

SSParse

– SuperSim outputs a file containing information for all traffic from the “sampling” window (e.g., *.mpf).

– SSParse parses this file, run analyses, and prepares data sets for plotting

– SSParse exposes a filtering API to only view the information you care about

– Ex: “+app=1” – only parses data from application 1

– Ex: “-send=450-890” – parses data not sent between time 450 and 890

21

Sim Parse Packet samples

Single

Plots

Sweep

Plots

SSPlot

22

Name Description # of Sims

Time-Latency-Scatter Load vs. latency scatter 1

Latency-PDF Latency probability density function 1

Latency-CDF Latency cumulative distribution function 1

Latency-Percentile Latency percentiles (inverted logarithmic CDF) 1

Time-Latency Time vs. latency at all distributions 1

Time-Average-Hops Time vs. average hops 1

Time-Percent-Minimal Time vs. minimal and non-minimal percentages 1

Load-Latency Load vs. latency at all distributions 1 sweep

Load-Rate Offered rate vs. delivered rate (min, mean, max) 1 sweep

Load-Rate-Percent Offered rate vs. delivered rate (total, minimal, non-minimal) 1 sweep

Load-Average-Hops Load vs. average hops 1 sweep

Load-Percent-Minimal Load vs. minimal and non-minimal percentages 1 sweep

Load-Latency-Compare Load vs. latency across multiple sweeps N sweeps

SSPlot: Time-Latency-Scatter

23

Load vs. latency scatter

– This is the result of a single
simulation

SSPlot: Latency-PDF

24

Latency probability density
function

– This is the result of a single
simulation

SSPlot: Latency-CDF

25

Latency cumulative distribution
function

– This is the result of a single
simulation

SSPlot: Latency-Percentile

26

Latency percentiles (inverted
logarithmic CDF)

– This is the result of a single
simulation

SSPlot: Time-Average-Hops

27

Time vs. average hops

– This is the result of a single
simulation

– In this simulation there are two
applications. Application 0 sends
uniform random traffic at 10% the
whole time. Application 1 sends bit
complement traffic (adversarial) in
a pulse starting at time ~35,000

– These results show the traffic only
for Application 0

SSPlot: Time-Percent-Minimal

28

Time vs. minimal and non-minimal
percentages

– This is the result of a single
simulation

– In this simulation there are two
applications. Application 0 sends
uniform random traffic at 10% the
whole time. Application 1 sends bit
complement traffic (adversarial) in
a pulse starting at time ~35,000

– These results show the traffic only
for Application 0

SSPlot: Load-Latency

29

Load vs. latency at all
distributions

– This is the result of a sweep of
simulations across injection rate

– This simulation is an application
sending uniform random traffic and
randomly sizes messages

SSPlot: Load-Latency-Compare

30

Load vs. latency across multiple
sweeps

– This is the result of many sweeps
of simulations across injection rate
(one sweep for “RR” and one for
“AGE”)

– This plot is like the Load-Latency
plot but compares across multiple
sweeps

– This particular setup shows
median latency (any latency
distribution can be chosen)

SSPlot: Load-Rate

31

Offered rate vs. delivered rate
(min, mean, max)

– This is the result of a sweep of
simulations across injection rate

– This simulation is an application
sending traffic over a torus
network that stresses the bisection

– At 65% injection rate, the network
becomes saturated. Severe
bandwidth unfairness occurs due
to round-robin arbitration

SSSweep

– SSSweep automates the entire simulation pipeline process

– Users define independent simulation variables and corresponding functions to apply the variable

32

algs = ['oblivious', 'adaptive']

def set_alg(alg, config):

 return ('network.protocol_classes[0].routing.adaptive=bool={}'

 .format('true' if alg == 'adaptive' else 'false'))

sweeper.add_variable('Routing Algorithm', 'RA', algs, set_alg)

– Users define the type of plots they’d like

– SSSweep creates all configurations and uses Taskrun to run all tasks

– SSSweep generates a static HTML/CSS/Javscript web site for plot viewing

SuperSim: Extensible Flit-Level Simulation of
Large-Scale Interconnection Networks
 www.github.com/hewlettpackard/supersim

33

http://www.github.com/hewlettpackard/supersim

Backup Slides

34

Focus on Real Issues of Large-Scale Networks

Analyze latency
distributions rather than
just average latency

35

SSParse: Transient Tool

– SSParse includes a wrapper tool that uses the main SSParse executable to generate a transient analysis

36

Sim

Parse

Transient

Plots
Transient

Transient latency

and hop count

SSPlot: Time-Latency

37

Time vs. latency at all
distributions

– This is the result of a single
simulation

– In this simulation there are two
applications. Application 0 sends
uniform random traffic at 10% the
whole time. Application 1 sends bit
complement traffic (adversarial) in
a pulse starting at time ~35,000

– These results show the traffic only
for Application 0

SSPlot: Load-Rate-Percent

38

Offered rate vs. delivered rate
(total, minimal, non-minimal)

– This is the result of a sweep of
simulations across injection rate

– This simulation is an application
sending uniform random traffic and
randomly sizes messages

SSPlot: Load-Average-Hops

39

Load vs. average hops

– This is the result of a sweep of
simulations across injection rate

– This simulation is an application
sending uniform random traffic and
randomly sizes messages

SSPlot: Load-Percent-Minimal

40

Load vs. minimal and non-
minimal percentages

– This is the result of a sweep of
simulations across injection rate

– This simulation is an application
sending uniform random traffic and
randomly sizes messages

