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Abstract—The interconnection networks of modern large-
scale computing systems are quickly increasing in size and
complexity to keep up with the demand for computing
capability. These systems rely heavily on complex router
microarchitectures and intelligent adaptive routing algorithms
structured for cost-optimized low-diameter networks. These
technologies need to be properly modeled and evaluated during
design space exploration and for performance characterization
of the system.

We present SuperSim, an open-source flit-level inter-
connection network simulator that enables focused evaluation
of issues related to designing and deploying large-scale high-
performance networks. SuperSim is a programmer-centric sim-
ulation framework explicitly designed to be flexibly extended
and is supported by a number of tools making it easy to use
and allowing users to model systems quickly. In this work we
show the results for simulation case studies demonstrating the
power of SuperSim to uncover otherwise overlooked details in
large-scale interconnection networks.
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I. INTRODUCTION

For high-performance computing systems the inter-

connection network is the critical piece of hardware that

makes the system a “supercomputer”. In other realms,

cloud and enterprise data centers and personal computers

for example, one can find the same processors, memory,

storage devices, and accelerators. It is the network that

tightly couples these devices in such a way that it can

be viewed and used as a single high-performance system.

The network enables the programming runtimes (e.g., MPI,

SHMEM, UPC, etc.) to be highly productive to programmers

by supplying large amounts of bandwidth and low message

latencies. Supercomputer architectures are seeing a large

increase in size and complexity to achieve an exaflop of

performance [32]. As the number and complexity of nodes
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Department of Energy under LLNS Subcontract B621301.

continues to increase to achieve exascale, the importance

and critical role of the network also increases.

It has been shown that with high router I/O bandwidth, the

pairing of high-radix routers [21], [29] with low-diameter

networks [3], [4], [17], [18], [20] most efficiently uses

the router’s bandwidth, minimizes the cost of the network,

and increases application performance. These systems rely

heavily on complex router microarchitectures and intelligent

adaptive routing algorithms. These technologies need to

be properly modeled and evaluated during design space

exploration and for performance characterization. It has been

our experience that current tools, whether they be high-

level large system simulators or detail-oriented small system

simulators, lack the appropriate features to properly model

the important attributes of large-scale high-performance

interconnection networks.

Simulators have long been used to quantify the perfor-

mance of interconnection networks of many kinds. Various

simulators operate at different granularities depending on

what they are designed for, common granularities being

flows, packets, and flits. Flow-level simulators model high-

level interactions of streams of data across a network. These

simulators are specifically useful for analyses of steady-state

or long periods of time. Packet-level simulators model each

individual packet which enables more accurate modeling

of the effects of congestion and transient packet-based

scheduling conflicts. Flit-level simulators model every flit of

every packet. A flit, or flow control digit, is the smallest unit

of resource allocation in a router [11]. Flits are the units upon

which routers manage buffering, data flow, and resource

scheduling. As a result, flit-level simulation is required to

gain thorough understanding of the behavior of a router

microarchitecture.

In this work we present SuperSim, an open-source flit-

level interconnection network simulator that properly models

the architectural details of large-scale networks. Many of the

drivers for the design of SuperSim align with key topics of
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interest in large-scale networks. These include:

• Large topologies with high channel latencies

• Architectural implications of congestion delays

• Deep pipelines and long processing latencies

• Complex hierarchical microarchitectures

• Multi-frequency designs

• The interaction of multiple workloads

• Heterogeneous endpoints

SuperSim is a flexible and extensible event-driven sim-

ulator written in C++. SuperSim models time abstractly

allowing it to be used in cycle-accurate simulation, subcycle-

accurate simulation, and higher-level simulation. It is a

generic network simulator able to simulate large-scale net-

works, small-scale multiprocessor networks, and networks-

on-chip (NoCs) [10]. It is used in both industrial and

academic research projects and was chosen for the Inter-

connection Networks class at Stanford University. SuperSim

places significant priority on programmer productivity by

maintaining a well-defined hierarchical abstract interface

enabling users to easily add their own component models.

SuperSim provides effective object factories to enable users

to integrate their code simply by dropping in new source

files requiring zero changes to the existing code base.

SuperSim [13] is supported by many tools [23], [24], [25],

[26] that make running simulations extremely easy. With

these tools a user can write a simple Python script of only a

few tens of lines which may result in an extensive simulation

sweep containing tens of thousands of command line op-

erations covering simulation runs, output parsing, statistics

analysis, and plotting. These tools efficiently schedule the

corresponding operations to run in the proper order and

without resource conflicts on a single computer or across

a large cluster of computers.

In summary, this work makes the following contributions:

• We describe the structure and capabilities of the open-

source SuperSim interconnection network simulator.

• We describe the many open-source tools that support

SuperSim and how these tools make it extremely easy

to generate sweeps of simulations, analyses, and plots.

• Using the detailed modeling in SuperSim for large-scale

router microarchitectures we perform three case studies

showing the impact of common assumptions made in

other simulators. Specifically we show the effects of

latent congestion detection, realistic credit accounting,

and common flow control techniques.

II. RELATED WORK

Current simulators that model architectural details at

the flit-level often focus modeling on networks-on-chip

(NoCs) and point-to-point processor interconnects. In con-

trast, SuperSim was explicitly designed to be able to simu-

late the architectural details of large-scale networks. GEM5

[5] is a full system simulator that uses the Garnet [2] network

simulator to model the network. Garnet structurally limits

the size of simulation to 256 endpoints. BookSim [16] is

a stand-alone network simulator designed to be flexible for

the simulation of NoCs. While these tools are invaluable

for the research of interconnection networks at small scale,

their flexibility for expressing the architectures of large-scale

networks lacks detail in key areas of importance.

Some tools are designed specifically for simulation of

large systems, however, these tools compromise simulation

accuracy to the flow or packet-level for a reduction in

simulation execution time. SuperSim does not make this

compromise as it is a flit-level simulator designed for large-

scale networks. The NS [14], [27] and OMNeT++ [33]

simulators are tools designed to model wired and wire-

less networks and network software stacks. The Structural

Simulation ToolKit (SST) [28] and CODES [8] combined

with TraceR [15] model the system at the packet-level and

focus on how traffic is generated and injected into the

network. For example, SST is able to run parallel program

(e.g., MPI, SHMEM) motifs which are skeleton versions

of the program which only express fixed compute times

and the interactions with the parallel runtime. Similarly,

CODES/TraceR replays MPI dependency-oriented trace logs

to accurately inject traffic into the network. While these

tools are invaluable for application-level exploration and

high-level network bottleneck issues, their high-level packet-

oriented focus makes them unusable for network micro-

architecture design exploration and validation.

III. SIMULATION FRAMEWORK

SuperSim1 is written in standard C++ currently con-

suming over 30,000 lines of code with over 20% being

explanatory comments. The code is implemented in a well-

organized abstract class hierarchy utilizing over 350 source

files.

Since no existing simulator focuses on detail-oriented

large-scale networks, we designed SuperSim to fill this gap.

Meticulous effort has been put into SuperSim to make it a

flexible and extensible simulation framework instead of a

ready-to-go simulator. This decision stems from an insight

gained while discussing with a colleague about changes

needed to be made in a simulator during a research project:

“If a simulator already does what you want it to
do, there’s a good chance you aren’t asking the
right questions.”

— Christos Kozyrakis [22]
The insight of this statement is that if a simulator is

already doing what you want it to do then someone else

has likely already asked or answered those questions. The

ramification of this insight is that design exploration research

1The project that spurred the first work of this simulation infrastructure
was an architectural design space exploration for very high-radix routers.
We called the design SuperSwitch thus the simulator became SuperSim.
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generally requires significant extensions to existing simula-

tors. If an industrial project requires detailed modeling in

simulation it is likely that the proposed technology is not

modeled in existing simulators. The #1 goal of SuperSim

is to enable architects to quickly develop, instrument, and

analyze new designs.

A. Discrete Event Simulation

Simulator

Priority
Queue

Component
A

Component
B

Component
CExecuter

Figure 1. The discrete event simulation (DES) core of SuperSim

The simulation core of SuperSim is a discrete event

simulation (DES) engine as shown in Figure 1. A simulation

is natively built of components which are able to create

events. An event is a simple object with a time value

indicating when it is to be executed and a pointer to the

component that will perform the execution. It may also

contain component specific data. Each component links to

the global simulator object and pushes its new events into

the priority queue of the simulator. Components that interact

during simulation call each other’s functions which may in

turn cause new events to be enqueued into the global event

queue. The priority queue sorts the events such that the event

with the earliest execution time is presented at the head of

the queue. The engine’s executer sequentially pulls events

from the priority queue and executes them. The simulation

is over when the event queue runs empty.

B. Time Representation

SuperSim flexibly represents time as a hierarchical value

to enable architectures with custom needs. Time is composed

of ticks and epsilons, as shown in Figure 2a. Ticks represent

actual time and the user gets to decide the value of a

tick. Examples of tick values could be 1 nanosecond, 457

picoseconds (an arbitrary number), or a specific clock cycle

time. Using a real time value (e.g., picoseconds) yields

performance results that are easy to understand by those

who may not be familiar with digital logic design.

Epsilons are used to order operations performed within

one time tick. Each tick has its own unique epsilons.

Epsilons are not meant to represent real time and only serve

to maintain order of operation within a given tick. The order

at which the priority queue sorts events first looks at the

Tick 0
Eps 0 Eps 1 Eps N

Tick 1
Eps 0 Eps 1 Eps N Eps 0

Time
(a) Time divided into ticks and epsilons

Clock A
Clock B

(b) Multiple clock frequencies

Figure 2. Time representation in SuperSim

tick value where a lower tick value is always higher priority

regardless of the epsilons. If two events have equal tick

values the epsilons are used to determine priority.

SuperSim allows the use of multiple clock frequencies

in a design. Clock frequencies are specified by stating their

cycle time in units of number of time ticks. Figure 2b shows

an example of specifying two clock frequencies, Clock A

having a 3 tick cycle time and Clock B having a 2 tick cycle

time. Because SuperSim is modeling the digital logic of

network architectures, having multiple clock frequencies is

extremely useful in this framework. This is most commonly

used to model switch frequency speedup where the switch

core is run at a higher frequency than the links.

C. Configuration and Settings

The configuration of simulation infrastructures has long

been a tedious and error-prone process. Instead of using

a custom file format for configuration, SuperSim provides

flexible configuration through the JSON open-standard file

format that is described as “easy for humans to read and

write” [12]. The natural hierarchy of JSON makes it a

great API for configuration. For instance, the top level of

any network simulation includes both a network configura-

tion and a workload configuration. Using JSON these are

specified in two separate blocks, network and workload.

Besides having its own configuration variables, beneath the

network block are more blocks such as router and interface
specifying the configuration for the router and interface

architectures, respectively. Similarly, the router block has its

own configuration variables and more blocks such as arbiter.

When the simulator is building a particular configuration

it simply looks at the current JSON hierarchy then is able to

pass sub-blocks on to other constructors. For example, the

simulator builds a Network object using the JSON’s network
block. A Network object contains Router objects but it does

not care of what type they are. Instead of peeking down

into the JSON hierarchy, the Network constructor passes the

router block to the Router constructor for each Router object

it builds.

SuperSim’s JSON API implementation uses JSON at its

core and also provides command line overrides, file inclu-

sions, and object referencing. Listing 1 is a command line
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$ supersim myconfig.json \
> network.router.architecture=string=my_arch \
> network.concentration=uint=16

Listing 1. An example usage of SuperSim command line arguments

example showing a user starting SuperSim with a settings

file named “myconfig.json” and overriding two settings: the

router architecture and the network concentration.

D. Abstract APIs and Smart Factories

Implementing new component models in SuperSim is

made easy through the use of abstract C++ APIs and smart

object factories implemented in the C++ preprocessor. The

structure of SuperSim is both hierarchical and abstract.

Each major type of component (e.g., Workload, Application,

Network, Router, Allocator, Arbiter, etc.) within SuperSim

is abstractly defined using an abstract base class. Specific

implementations must derive from the base class to fit into

the simulation infrastructure.

SuperSim provides a method for easily including new

component models without modifying the existing code

base. Traditionally, object factories are implemented by a

function that takes a key, like a string description, then con-

structs and returns a new object. This function is commonly

placed alongside the base class to define its generic interface.

For example, the BookSim simulator uses a statically defined

“New()” function for an object factory of each specific

component type. However, this forces developers to alter

the existing code base in order to be able to use their new

component models. This makes working with the code base

tedious particularly when multiple developers are contribut-

ing new component models to a design. This is especially

problematic for scenarios where certain models will be kept

proprietary.

SuperSim uses an extremely easy-to-use object fac-

tory generator. Developers simply put a call to the

“registerWithObjectFactory()” macro in the

source file of new simulation models. SuperSim’s fac-

tory generator automatically generates the factory function

needed for all component types. When building the sim-

ulation components the simulator simply calls the factory

function and an object is constructed corresponding to the

name specified in the JSON settings. All this works in

standard C++ without any additional code generation tools.

IV. COMPONENT STRUCTURE

The top level structure of SuperSim creates a distinct

isolation between workload modeling and network mod-

eling, as shown in Figure 3. This strict isolation ensures

that network modeling has no baked in assumptions about

the workload and the workload structurally works with any

network model. Workloads can be customized to specific

network configurations by passing the required network

NetworkWorkload

Application

Terminal

Application

Application

Interface

Interface

Interface Router

Router
Terminal

Terminal

Terminal

Terminal

Terminal

Terminal

Terminal

Terminal

Router

Figure 3. The isolation between workload modeling and network modeling

attributes, via JSON, to workload models that may require

it. For example, the Tornado traffic pattern is an adversarial

traffic pattern for a Torus topology, thus, when specifying

this traffic pattern the user also gives it the configuration of

the corresponding Torus topology.

A. Workload

SuperSim traffic generation and modeling is done hier-

archically. SuperSim provides an API for multiple overlap-

ping Application models to run concurrently. Each Applica-

tion constructs one Terminal object per network endpoint.

Each Terminal is responsible for generating the traffic for

its specific Application on its specific endpoint.

App 0

App 1

Sampling

Warming Generating Finishing Draining

Time

Figure 4. The handshake protocol between the Workload and multiple
Applications to control the four phases of simulation

The Workload is defined as a state machine that monitors

and controls the execution of all Applications. It aligns the

Applications areas of interest with its sampling window

where detailed information is gathered. As shown in Figure

4, the Workload uses a special handshake protocol to control
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the execution phases of all Applications. The workload

defines four phases of execution:

1) Warming: This phase can be used by applications that

require simulation time to prepare the network.

2) Generating: This phase is the primary time for appli-

cations to generate traffic to be sampled.

3) Finishing: This phase is used for any roll over traffic

from the Generating phase that still needs to be

sampled.

4) Draining: This phase simply drains the network as

applications are not allowed to generate traffic.

This four phase protocol is derived from the common

three phase approach of warming, sampling, and draining

[11]. SuperSim divides sampling into generating and fin-

ishing to allow multiple applications to interoperate without

explicitly being designed for each other. This allows users to

design new applications and compose new workloads built

from multiple applications.
Implicitly all applications start in the warming phase.

When an application decides it is done warming it sends

the Ready signal to the Workload. Applications may send

network traffic to “warm up” the network if desired. Other

applications might immediately send the Ready signal if they

do not wish to perform any warming.
When all applications have reported Ready, the Workload

simultaneously sends the Start command to all applications.

This puts them in the generating phase. Each unique ap-

plication generates its own traffic during this phase. When

an application has determined that is has performed its

necessary traffic generation, it sends the Complete signal

to the Workload. At this point, some applications may have

stopped sending traffic while others might continue sending

traffic waiting for the next phase.
When all applications have reported Complete, the Work-

load simultaneously sends the Stop command to all appli-

cations. This puts them in the finishing phase where they

are able to finish remaining traffic generation if they have

not already done so. When finished the application sends the

Done signal to the Workload.
When all applications have reported Done, the Workload

simultaneously sends the Kill command to all applications.

This puts them in the draining phase. After receiving a

kill command, applications are not allowed to generate new

traffic and all traffic in the network drains out. As a result,

the event queue in the simulation core will run empty and

the simulation will end.
A common multi-application experiment in SuperSim is

a transient analysis of an adaptive routing algorithm. This

uses the Blast application for steady state traffic and the

Pulse application to generate a temporary disturbance, as

shown in Figure 5 showing only traffic from Blast. While

Blast warms up the network, Pulse remains idle waiting

for the Start command from the workload. At that point,

Blast continues sending traffic and begins sampling while

Pulse starts sending traffic. Blast can immediately give

the Complete signal because it does not care how long

the sampling lasts. Pulse gives the Complete signal when

it completes sending its traffic. After the Stop command

is given the Blast application stops flagging traffic to be

sampled but continues sending traffic at a constant injection

rate. Once all traffic flagged for sampling has exited the

network the draining phase safely begins.

Figure 5. Blast application mean latency disrupted by the Pulse application.

B. Network

A SuperSim Network component model is responsible

for defining the topology of the network and the routing

algorithm being used in the topology. While the Network

component does not define the architecture of the Router
nor the Interface, it does instantiate these components and

connects them together via Channel components. Similarly,

the Interface and Router components are not made for a

specific network topology or routing algorithm, but they

must understand how to route packets through the network.

When constructing a Network, the Network constructor

provides access to its RoutingAlgorithm component factory

for each Router object it creates. As the Router builds itself it

uses this factory to construct RoutingAlgorithm components

as needed. In this way, the router microarchitecture and

the topology with its accompanying routing algorithm are

modeled independently. The Network builds and configures

Interface components in a similar fashion.

SuperSim comes with models of various topologies and

routing algorithms. It is packaged with standard topologies

such as Torus [9], Folded-Clos [7], HyperX [3] (which can

make all configurations of HyperCube [30] and Flattened

Butterfly [20]), and Dragonfly [18]. Across these topologies

are implementations of both oblivious and adaptive routing.

SuperSim also has topologies that are used to stress test

certain router architectural features. For instance, SuperSim

contains a simple topology that creates the parking lot

problem where age-based arbitration is known to fix the

bandwidth unfairness of round-robin arbitration [1], [11].

C. Microarchitecture

SuperSim currently has three flexibly defined router

microarchitectures. Each of these router architectures can
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be configured in various ways. The architectures are built

using common components such as crossbars, virtual chan-

nel schedulers, crossbar schedulers, allocators, arbiters, and

congestion sensors. All of these common components im-

plement an abstract class interface and have many imple-

mentations available. Beyond these three architectures, users

can piece together architectures of their own using the same

building blocks or implement their own component models.

Output-Queued Architecture: The output-queued (OQ)

architecture is an idealistic architecture designed to model a

router in which there is zero head-of-line blocking and no

scheduling conflicts. The size of the output queues can be

infinite or finite. All input ports can simultaneously put a

packet in any output queue (i.e., no scheduling conflicts).

Another benefit of this architecture is a reduced simulation

execution time. The modeling of the OQ router is simple and

devoid of the details that commonly slow down simulation

(e.g., virtual channel allocation, crossbar scheduling, etc.).

Input-Queued Architecture: The input-queued (IQ) ar-

chitecture is modeled after the standard input-queued archi-

tecture in [11]. It has full crossbar input speedup and an

optimized input-queue pipeline for processing flits of back-

to-back packets. In this architecture, flits wait in the input

queues until available downstream (i.e., next hop) credits are

available.
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Figure 6. Input-output-queued (IOQ) microarchitecture in SuperSim

Input-Output-Queued Architecture: The input-output-

queued (IOQ) architecture, shown in Figure 6, is also

modeled after the standard input-queued architecture in [11]

but has been extended as a combined input/output queued

switch [6]. It has full crossbar input and output speedup

and has similar pipeline optimizations in both the input and

output queues. In this architecture, flits only wait in the input

queues until credits are available for the output queues. After

arriving in the output queues flits wait until downstream (i.e.,

next hop) credits are available.

D. Error Detection

Since SuperSim is a framework designed to be extended,

users often design new component models. The worst case

scenario is a bug in the code that goes unnoticed. The

framework of SuperSim is designed to catch these bugs

early on. A few examples are as follows. Every flit delivered

to a destination is guaranteed to have arrived at the right

destination and in the right order with respect to other flits

in the packet. The outputs generated by routing algorithms

are checked to not use VCs which have not been registered

to that specific algorithm. Traffic that attempts to target an

unused router output port is rejected. Buffers never silently

overrun and credits never go negative.

V. ACCOMPANYING TOOLS

The common workflow for a simulation experiment fol-

lows these steps:

1) Configure: Create the simulation configurations

needed for the experiment.

2) Simulate: Run the simulations using the configura-

tions and generate raw data.

3) Parse: Parse the results of the simulation output into

the format needed in the remaining steps.

4) Analyze: Analyze the parsed results from simulation

to create desired statistics.

5) Plot: Generate plots of analysis data.

6) View: View the analyzed and plotted results.

We have created a multitude of tools accompanying Super-

Sim for each of these steps as well as tools to perform

the whole flow autonomously. Having intelligent and easy-

to-use tools gives power to users to uncover insights and

problems where they might not have thought to look.

SSParse [23]: During the sampling window in a SuperSim

simulation, network transaction information is logged to

a verbose file format. The SSParse tool parses this file

format and generates latency based information in various

formats. It generates latency and hop count based informa-

tion for packets, messages, and transactions. It generates

both aggregate information, like latency distributions, as

well as raw latency data used for plotting. SSParse has an

easy-to-use filtering mechanism that allows users to view

subsets of the data generated by SuperSim. For example,

passing SSParse a filter of “+app=0” tells SSParse to

only analyze traffic generated by application 0. A filter of

“+send=500-1000” tells SSParse to only analyze traffic

that was sent from time 500 to 1000. Multiple filters can be

specified and many more filtering options are available.

SSPlot [24]: SSPlot is a plotting package that uses the

Python-based Matplotlib package. SSPlot is both a Python

92



Figure 7. A percentile distribution plot generated by SSPlot

package and a set of command line executables and users can

use whichever they prefer. Of critical importance to all the

analysis tools is analyzing and viewing latency distributions,

not just average latency. SSPlot generates average latency

plots (shown in Figure 5), scatter plots, probability density

function (PDF) plots, cumulative distribution function (CDF)

plots, and percentile distribution plots (shown in Figure

7). The percentile distribution is particularly useful for

understanding expected latencies in a network. As shown,

the 99.9th percentile latency is 592 ns which means that

only 1 in 1000 packets experience latency greater than 592

ns. This is the expected latency for 1000-way parallelism.

Figure 8 is a load versus latency plot, the primary method

used to describe network performance [11], showing mul-

tiple latency distributions across a sweep of simulations.

The plot lines stop at the point where the network becomes

saturated (98% in this case) because a saturated network

yields infinite latency. This particular plot was generated

from an adaptive routing experiment where the effects of

phantom congestion [34] were present. In this simulation

a non-minimal adaptive routing decision causes a packet to

traverse an additional 50 ns channel latency and 50 ns router

traversal. In the plot it is clearly shown that at low loads a

significant amount of traffic is going non-minimal. Since the

plot shows latency distributions we are able to specifically

see that more than 1 in 10 packets (90th%) are going non-

minimal at zero-load. At 12% injection it drops to 1 in 100

packets (99th%) and by 40% injection phantom congestion

effects have eased to where less than 1 in 10,000 packets

(99.99th%) are going non-minimal. This detailed knowledge

is in stark contrast to the prior art that only viewed the little

bump at zero-load produced by the mean latency.

TaskRun [25]: TaskRun is an easy-to-use Python package

for running tasks with dependencies, conditional execution,

resource management, and much more. The process from

running simulations, parsing the results, analyzing the data,

and plotting the results entails many steps and each step

has dependencies on previous steps. TaskRun makes this

process easy and automated. A TaskRun script can elegantly

run thousands of simulations and all required post-simulation

tools. TaskRun is also able to interface with batch scheduling

systems (e.g., Slurm, GridEngine, PBS, LSF, etc.). TaskRun

Figure 8. A sample load versus latency plot showing latency distributions

latencies = [1, 2, 4, 8, 16, 32, 64]
def set_latency(latency, config):

return "network.channel.latency=uint=" +
str(latency)

sweeper.add_variable("ChannelLatency", "CL",
latencies, set_latency)

Listing 2. An example definition of a simulation sweep variable in
SSSweep

is not specific to SuperSim but was created to fit its scalable

and dependency-ordered execution needs.

SSSweep [26]: SSSweep is a flexible Python package that

automatically generates and executes simulations, parsing,

analyzing, and plotting across one or more sweeping vari-

ables. Users write a short Python script that includes a few

lines of code per simulation variable they desire to sweep.

Each variable is accompanied with a user specified function

that generates the corresponding SuperSim command line

setting override. Listing 2 is a code snippet showing a small

block of code declaring a sweep variable for simulating

various channel latencies. SSSweep generates all the com-

mands with corresponding dependencies of all permutations

of variables and uses TaskRun to run all the tasks. SSSweep

can literally turn a tiny amount of Python code into a

complex, exhaustive, and autonomous simulation, analysis,

and plotting sweep. SSSweep generates a web viewer using

HTML, CSS, and Javascript. Simulation sweeps often result

in many thousands of plots and the web viewer organizes

all of this making it easy to find and share particular plots

of interest.

VI. CASE STUDIES

In this section we present the results of three simulation

case studies that show the importance of realistic modeling

of the router architectures of large-scale networks. These

experiments exemplify some critical features of large scale

network and router design that SuperSim is designed to

support. SuperSim’s natural focus on large scale system

attributes enabled us to perform these experiments without

altering any code. The critical simulation parameters for the

experiments are in Table I.
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Table I
PARAMETERS FOR THE THREE SIMULATION CASE STUDIES

Parameter Latent Congestion Detection Congestion Credit Accounting Flow Control Techniques
Network topology 3-level folded-Clos, 4096 terminals 1D flattened butterfly, 32 routers, 1024 terminals 4D torus 8x8x8x8, 4096 terminals
Network channel latency 50 ns (i.e., 10 meter cables) 50 ns (i.e., 10 meter cables) 5 ns (i.e., 1 meter cables)
Routing algorithm adaptive uprouting UGAL dimension order routing
Router radix 32 ports 63 ports 9 ports
Router architecture output-queued (OQ) input-output-queued (IOQ) input-queued (IQ)
Frequency speedup 1x (i.e., none) 2x 1x (i.e., none)
Number of VCs 1 VC 2 VCs 2,4,8 VCs
Input buffer size 150 flits 128 flits 128 flits
Output buffer size infinite and 64 flits 256 flits n/a
Router core latency 50 ns queue-to-queue 50 ns main crossbar latency 25 ns main crossbar latency
Message size 1 flit 1 flit 1,2,4,8,16,32 flits
Traffic pattern uniform random to root uniform random, bit complement uniform random

A. Latent Congestion Detection

In this simulation experiment we analyze the negative

effects of congestion detection latency within a high-radix

router architecture. To the best of our knowledge all prior

work has assumed that the propagation of congestion in-

formation from the point of calculation from within the

microarchitecture to all the routing functions occurs in a

single cycle. The delays through modern switch architectures

are realistically in the range of 5-20 clock cycles.

In a high-radix router architecture each input port’s rout-

ing engine operates independently. Kim et al. [19] showed

that adaptive routing causes the packets resident in multiple

input ports to bombard a seemly good output port resulting

in excessive queuing delay. In our study, we show how latent

congestion detection exacerbates this problem.

For this study we use a 4096-node 3-level folded-Clos

topology and a random traffic pattern where all traffic

reaches the root of the network. We use the same basic

adaptive routing algorithm as Kim et al. where each packet

chooses the least congested output port on its way up

the network. We use the idealistic output-queued (OQ)

router architecture to remove any microarchitecture-based

bottlenecks. We test infinite output queues as well as finite

output queues. We vary the propagation latency of sensed

congestion information from 1 to 32 nanoseconds.

Figure 9 shows the results of this simulation sweep. The

performance variation of using infinite output queues (shown

in Figure 9a) shows that high latency congestion sensing will

cause significantly higher message latencies. The throughput

is not affected because the infinite queues can infinitely

sink traffic. In contrast, the performance variation of using

finite 64 flit output queues (shown in Figure 9b) shows

that throughput performance is severely limited with high

latency congestion sensing. With 1 ns of congestion sensing

delay good throughput is achieved but with 2 ns of delay

throughput drops by ∼15%, with 4 ns of delay throughput

drops by ∼45%, and with 8 ns of delay throughput drops

by ∼65%.

Our simulations of smaller systems yield less severe

(a) Infinite output queues

(b) 64 flit output queues

Figure 9. Comparison of various congestion sensing latencies using
adaptive routing on a 3 level folded-Clos topology with a) infinite output
queues, b) 64 flit output queues

penalties. For example, the same setup using radix-16 routers

builds a system of 512 terminals. The achieved throughput

of 1, 2, 4, and 8 ns of congestion latency delay is 90%,

90%, 75%, and 40%, respectively. More network levels and

higher radix routers exacerbates the issue of multiple routing

engines simultaneously choosing the same output port.

This experiment clearly outlines the importance of model-

ing router architectures accurately at the flit-level as packet-

level modeling has simplified assumptions about buffer

management that loses detail about the specific flow of flits

and the reverse flow and timing of credits. Many high-level

simulators yield performance characteristics similar to Fig-

ure 9a, however, realistic implementations yield performance
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more like Figure 9b when these effects are not properly

handled. The difference can yield detrimental mispredictions

of network performance.

B. Congestion Credit Accounting

In this simulation experiment we analyze the effects of

various forms of credit accounting methodologies. Each of

the three router architectures described in Section IV-C have

a flexible design for the way in which credit information is

given to the Congestion Sensor component. The supplied

Congestion Sensor component in SuperSim uses current

credit information to yield a congestion value for potential

paths being considered by a routing algorithm implemen-

tation. Adaptive routing algorithms use this congestion in-

formation to make decisions about which path(s) yield best

performance.

In the seminal work on source-based global adaptive

routing, Singh developed the Universal Global Adaptive
Load-balancing (UGAL) algorithm [31]. The simulations

that proved its usefulness used an idealistic output-queued

switch architecture, channels with zero latency, and conges-

tion was strictly based on the number of flits resident in the

output queues. In this experiment we use the input-output-

queued (IOQ) router architecture (shown in Figure 6) to

investigate the performance ramifications of various styles

of congestion credit accounting on systems with realistic

router and channel latencies. The IOQ architecture supports

reporting congestion status on a per-VC basis or on a per-

port basis. It also supports viewing only credits for the

output queues, only credits for the downstream queues, or

the combination of credits of both output and downstream

queues.

This experiment is run using both load-balanced uniform

random (UR) traffic and unbalanced bit complement (BC)

traffic on a 1024-node 1D Flattened Butterfly topology.

Figure 10a shows the performance achieved with UR

traffic across the six different congestion credit accounting

styles. As shown, the port-based accounting methodology

provides higher throughput by an average of 31.6% and

significantly less latency. Using output, downstream, or

combined output and downstream credits does not seem to

change the performance by any significant amount.

Figure 10b shows the performance achieved with BC

traffic across the six different congestion credit accounting

styles. In contrast to the above, the VC-based accounting

methodology provides higher throughput, which it does by

3.33% on average. Apparent from these results is that using

only downstream credits does not allow the adaptive routing

algorithm to properly sense the congestion of BC traffic.

This type of experimentation is crucial for router archi-

tects as they need to decide how credit information is fed

to the congestion sensing logic and they need to know

the ramifications of such options. For example, port-based

congestion sensing may have adverse effects when using

(a) Uniform random traffic

(b) Bit complement traffic

Figure 10. Comparison of various six credit accounting styles with a)
uniform random traffic and, b) bit complement traffic

traffic classes where some VCs are meant to be isolated

from others. VC-based congestion sensing may have adverse

effects when using technologies like age-based arbitration

because being at the head of a queue does not yield

any specific priority. SuperSim’s flexible framework allows

router architects to easily experiment with credit accounting

styles in conjunction with other technologies to see if they

fit well together.

C. Flow Control Techniques

In this simulation experiment we analyze the effects of

various flow control techniques on a 4096-node 4D torus

topology using the input-queued (IQ) router architecture. In

SuperSim, configuring different flow control techniques is

easily done by giving the Crossbar Scheduler component

various settings. In this experiment we evaluate the following

three flow control techniques, described by Dally et al. [11]:

• Flit-Buffer Flow Control (FB): This technique per-

forms flit-by-flit scheduling of the crossbar. If two

packets are in arbitration for the same output channel

the flits of both packets interleave each taking 50%

of the bandwidth. This is a fair bandwidth allocation

policy.

• Packet-Buffer Flow Control (PB): This technique

performs packet-by-packet scheduling of the crossbar.

A packet is only able to win arbitration if there is

enough downstream space for the entire packet. Once

a packet wins arbitration the decision is locked until
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(a) 2 VCs (b) 4 VCs (c) 8 VCs

Figure 11. Throughput performance of various flow control techniques on a 4096-node 4D torus across various messages with a) 2 VCs, b) 4 VCs, and
c) 8 VCs

the tail flit enters the crossbar. Because the scheduler

ensures there is enough available space for the full

packet, there will be no credit stalls once the packet

starts streaming.

• Winner-Take-All Flow Control (WTA): This tech-

nique is a hybrid between the prior two. It performs

flit-by-flit scheduling of the crossbar and the scheduler

locks the decision once made. Because this is a flit-

level technique the scheduler does not wait for enough

credits for the full packet before letting it start. Since

credit stalls can occur with this technique, if a streaming

packet encounters a lack of credits, the scheduling

decision is unlocked and other packets with available

credits are able to take over.

For this experiment we test systems with various numbers

of virtual channels (i.e., 2, 4, 8) with various message sizes

(i.e., 1, 2, 4, 8, 16, 32 flits). Figure 11 shows the results of

1,800 simulations generated by SSSweep using only 50 lines

of Python. For the most part there is very little performance

differences between the three flow control techniques. The

explanation of this can be seen by looking only at the simu-

lation results for single flit messages where the effects of the

three flow control techniques have no variance because they

all act the same. On small systems with small latencies, the

length of packets and wormhole routing [11] causes packets

to physically hold many resources concurrently potentially

existing simultaneously in many routers. However, in large

systems with high latencies packets generally are only able

to exist within one device and the blocking issues related to

long packets are significantly reduced. Thus, at large scales

with small to medium sized packets, the unit of allocation

(i.e., flit vs. packet) is negligible.
The latency results of this experiment are mostly similar

across the three flow control techniques with few exceptions.

The comparison shown in Figure 12 shows a load versus

latency plot of the configuration of 8 VCs with 32 flit

messages. The blocking effects of large 32 flit messages are

severe but 8 VCs provides the potential for the flow control

technique to find ways around blocked packets. As shown,

the pure flit-buffer flow control technique provides the best

resilience to blocking and results in the lowest latency.

Packet-buffer flow control does the worst and winner-take-

all flow control performs in the middle, which makes sense

Figure 12. Latency performance of the flow control techniques with 8
VCs and 32 flit messages

because it is a hybrid of the two.

The results of this experiment oppose that of prior art for

small-scale networks [11] which states that the flow control

technique used for resource allocation plays an enormous

part in overall performance. Our results yield the insight

that if bandwidths continue to increase and packets remain

relatively small, the number of flits per packet decreases

and the flow control technique becomes less meaningful. A

critical design outcome of this is that if packet-buffer flow

control is easier to implement than flit-buffer flow control

and is therefore desired, the maximum packet size should be

kept as small as possible within the bounds of reasonable

payload efficiency.

VII. CONCLUSION

In this work we have presented the SuperSim network

simulation framework and its supporting tools. SuperSim’s

design allows users to easily model new topologies, routing

algorithms, and microarchitectures and easily integrate them

into the SuperSim codebase. SuperSim’s supporting tools

are able to autonomously generate and execute complex

simulation sweeps, analyses, and plots with very minimal

effort from the user. In this work we used SuperSim’s ability

to model large-scale systems to show that accurate prediction

of system performance critically depends on modeling the

microarchitecture accurately at the flit-level.
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