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ABSTRACT
In efforts to increase performance and reduce cost, modern low-
diameter networks are designed for average case traffic and rely
on non-minimal adaptive routing for network load-balancing when
adversarial traffic patterns are encountered. Source adaptive rout-
ing is the predominant method for adaptive routing even though
it presents many deficiencies related to making global decisions
based solely on local information. In contrast, incremental adaptive
routing, which performs an adaptive decision at every hop, is able
to increase throughput and reduce latency by overcoming the de-
ficiencies of source adaptive routing. We present two incremental
adaptive routing algorithms for HyperX which are the first to be
fully implementable in modern high-radix router architectures and
interconnection network protocols. Using cycle accurate simulations
of a 4,096 node network, our evaluation shows these algorithms are
able to exceed the performance of prior work by as much as 4x with
synthetic traffic and 25% with 27-point stencil traffic.
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1 INTRODUCTION
For high-performance computing systems the interconnection net-
work is the critical subsystem that makes the system a “supercom-
puter”. In other realms, cloud and enterprise data centers and per-
sonal computers for example, one can find the same processors,
memory, storage devices, and accelerators. It is the network that
tightly couples these devices in such a way that it can be viewed
and used as a single high-performance system. The network enables
*This work was done while all authors were with Hewlett Packard Enterprise.
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the programming runtimes (e.g., MPI, SHMEM, UPC, etc.) to be
highly productive to programmers by supplying large amounts of
bandwidth and low message latencies. Supercomputer architectures
are seeing a large increase in size and complexity in an attempt to
achieve exaflop performance levels [1]. As the number and complex-
ity of nodes continues to increase to achieve exascale, the importance
and critical role of the network also increases.

It has been shown that with high router I/O bandwidth, the pairing
of high-radix routers [2, 3] with low-diameter networks [4–8] most
efficiently uses the router’s bandwidth, minimizes the cost of the
network, and increases application performance. Ultra low-diameter
topologies (e.g., Flattened Butterfly [4], Dragonfly [5], HyperX [6],
SlimFly [7], Dragonfly+ [9] or Megafly [10]) optimize the bisection
bandwidth of the network to support full throughput for uniformly
distributed traffic patterns. While they are more cost efficient and
have higher performance, these topologies require intelligent non-
minimal adaptive routing to realize their full potential when the
traffic is not uniformly distributed. Traditionally these topologies
have been paired with a global adaptive routing [11] algorithm often
with topology specific modifications, for example, Clos-AD [4] for
the Flattened Butterfly and progressive adaptive routing [12] for the
Dragonfly.

The Dragonfly is the current state-of-the-art topology for large-
scale systems and was designed to exploit modern link-level tech-
nologies which allows it to reduce cabling costs by 50% when
compared to the Fat Tree and 10% when compared to the HyperX.
However, due to high signaling speeds, link-level technologies are
rapidly changing. The reach of direct attach copper cables is shrink-
ing. The cost delta between direct attached copper and active optical
cables is growing even though $/bps cost is shrinking. New link-level
technologies based on co-located, co-packaged, or fully integrated
photonics allow the use of low-cost passive optical cables [13–17].
Under these conditions, the HyperX can be more cost-efficient com-
pared to the Dragonfly (discussed in Section 3.1).

HyperX is a high-performance network topology designed for
efficient packaging and scaling to exascale and beyond. Due to
its symmetric all-to-all structure in every dimension, HyperX has
significantly more path diversity that routing algorithms can exploit
during the entire path of a packet. This structure supports incremental
adaptive routing where routing algorithms can make many small
adaptive decisions for a packet instead of one large adaptive decision
at the source. As shown in this paper and in [6], this can yield
significant performance benefits.
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Figure 1: Paths taken by source and incremental adaptive rout-
ing algorithms after experiencing a congested channel from the
source router.

Source adaptive routing, which determines entire paths at the
source router, does not exploit the fully connected dimensions of
HyperX as only source router’s local information is used to make
global routing decisions. As shown in Figure 1, incremental adap-
tive routing algorithms make best use of the structure of HyperX
by dynamically moving around congestion only when needed and
choosing minimal paths when they are uncongested. Unfortunately,
previously proposed HyperX routing algorithms suffer from either
poor performance due to the use of source adaptive routing1 and/or
are impractical to implement due to requirements for specialized
router architectural features that do not exist in modern high-radix
router architectures (see Sections 4 and 5.4).

In this work, we propose two new incremental adaptive rout-
ing algorithms for HyperX that are practical for implementation in
modern high-radix large-scale networks that provide highest perfor-
mance across various traffic patterns. We provide a comprehensive
and detailed evaluation using cycle-accurate simulations of realistic
router architectures across six synthetic traffic patterns. In addition,
we implement a model to analyze performance for real application
communication patterns derived from common HPC physics-based
27-point stencil discretization workloads. Our results show that our
algorithms are able to exceed the performance of prior work by as
much as 4× when remote congestion exists and provide up to 25%
reduction in communication time for realistic stencil workloads.

2 BACKGROUND & RELATED WORK
2.1 Deadlock Avoidance
For networks that employ a form of active flow control (e.g., credit-
based flow control, on/off flow control, etc.), routing algorithms
must carefully utilize the resources of the network to avoid routing
deadlock [18]. Deadlock free resource usage comes in two flavors:
1At source 0-0 congestion on the minimal path 0-0 → 0-3 is sensed and the packet is
sent non-minimally.

restricted routes and resource classes. Restricted routes is a method-
ology that uses only a subset of the total routes available to ensure
deadlock freedom by never creating cyclic resource dependencies.
Dimension order routing (DOR) is a common routing algorithm for
integer lattice networks that employs restricted routes to achieve
deadlock freedom. Resource classes employs multiple sets of re-
sources such that moving through the network never creates cyclic
dependencies. This is commonly implemented using virtual channel
(VC) flow control [19, 20] where physical channels are virtually
divided into multiple logical channels. Dateline routing on a ring
topology employs resource classes by forcing packets to traverse
into a higher ordered VC each time around the ring. This guarantees
deadlock freedom by breaking the cyclic dependencies that struc-
turally exist within a ring topology. Similarly, distance classes are a
subset of resource classes where the resource class is incremented
every hop. This guarantees acyclic resource usage and prevents dead-
lock. Previously this was considered to be an infeasible method of
deadlock avoidance due to the large amount of resources (i.e., VCs)
needed for high-diameter networks. With the advent of low-diameter
networks, this is again being considered [7]. Many routing algo-
rithms use both restricted routes and resource classes for deadlock
avoidance, for example, dimension order routing on a Torus topology
[21] and minimal routing on a Dragonfly topology [5].

2.2 Adaptive Routing
Decades ago when Mesh, Torus [21], and HyperCube [22] topologies
[18] were prevalent, several key decisions were made that influenced
how routing is performed. One implementation decision of adaptive
routing is whether it is source based (i.e. adaptive decisions made at
the source router) or incremental (e.g., adaptive decisions made at
every hop). Minimal adaptive routing (i.e., Min-AD [23, 24]) is an
incremental adaptive routing algorithm that attempts to find the best
minimal path across the network by selecting the output port along
one of the minimal paths that has the least congestion. On most
topologies, all minimal routing algorithms, including O1Turn [25]
and ROMM [26, 27], have significant throughput deficiencies when
traffic is not uniformly distributed. For example, on the topology
evaluated in this paper all minimal algorithms achieve 4x less worst
case throughput compared to non-minimal algorithms. Thus, non-
minimal adaptive routing is necessary to achieve high performance
for high-radix topologies. The primary goal of non-minimal adaptive
routing is to choose a minimal path when the traffic is load balanced
and choose a non-minimal path when the traffic needs additional
load balancing.

For high-diameter networks, source adaptive routing has been
assumed for non-minimal adaptive routing with the use of Universal
Global Adaptive Load-balancing (UGAL) [11] algorithm which is
able to achieve 100% throughput for benign traffic and 50% through-
put for worst case traffic (assuming the bisection capacity of the
network is 50%). This is the highest theoretical performance in these
two extreme cases. The routing algorithm switches between using
minimal routing and Valiant’s randomized routing [28]. UGAL is
able to accomplish this using only two or four VCs on flat integer
lattice networks (e.g., Mesh(2), Torus(4), HyperCube(2), Flattened
Butterfly(2), HyperX(2)) by using two phases of dimension order
routing (DOR) which only requires either one or two VCs per phase.
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Figure 2: Scalability of various low-diameter networks.

On high-diameter networks, incremental adaptive routing proved
hard to employ while also producing a stable network (i.e., a net-
work where the throughput does not decrease significantly after the
network becomes saturated [19]). Since incremental adaptive routing
was hard to stabilize and resource expensive, source adaptive routing
eventually became the prevalent scheme for non-minimal adaptive
routing.

However, with low-diameter networks constructed of high-radix
routers, source adaptive routing can be problematic. For the Dragon-
fly topology, attempting to load-balance the global channels from
two router hops away produces significantly suboptimal throughput
and latency performance [5]. Progressive adaptive routing (PAR)
[12] was proposed where UGAL is re-evaluated within the source
group. One particular extension [29] of PAR on the Dragonfly al-
lows the routing algorithm to run a localized UGAL algorithm within
every group the packet happens to traverse.

Both source and progressive adaptive routing have a significant
deficiency as global routing decisions are made based only on lo-
cal information. In some scenarios, this means they are unable to
adapt to congestion not seen at the location where the adaptive de-
cision is made. In other scenarios, a slight amount of congestion
near the location where the adaptive decision is made will cause
global load-balancing resulting in a 2× increase in both bisection
bandwidth usage and packet latency. For these algorithms, once it
is decided that load-balancing is needed, they fully load-balance
(or route non-minimally) from that point forward, regardless of the
remaining network conditions experienced. PAR and its variants
bring light back to the original intent of incremental adaptive rout-
ing where it was noticed that making a large decision at the source
can lead to suboptimal behavior. In an ideal routing algorithm, the
adaptive decision could be determined at every router hop along the
chosen path. This allows packets to opportunistically attempt to take
the minimal path as long as it remains less congested. If a packet
encounters a scenario where all minimal paths are congested, it can
begin load balancing from that point forward and only as long as it
is needed. After moving around congestion a packet should again
be able to route minimally to its destination. This minimizes the
amount of bandwidth overhead the packet utilizes and the latency
overhead it experiences.

3 MOTIVATION
In this section we describe how changes in signaling technologies
has resulted in the HyperX topology becoming a more cost-efficient
alternative. We also discuss the challenges of irregular workloads
and how incremental adaptive routing helps address some of these
challenges.

3.1 Cost-Efficient HyperX Networks
HyperX [6] was proposed as a generalization to all flat integer lattice
networks where dimensions are fully connected (e.g., HyperCube,
Flattened Butterfly). Since HyperX is a superset of these topologies,
the remainder of this paper will use the name HyperX as the method-
ologies presented herein apply to all HyperX configurations. The
HyperX methodology is designed as a low-diameter network to fit
with high-radix routers. One of the primary benefits of HyperX is
that it can fit to any physical packaging scheme as each dimension
can be individually augmented to fit within a physical packaging
domain (e.g., a chassis, a rack, a row of racks, etc.). Figure 2 shows
a scalability plot for a few key network topologies. The number next
to each topology name represents the network diameter measured in
number of router traversals along the longest minimal path. With a
64-port router, the HyperX topology is able to build 10,648 nodes in
2 dimensions, 78,608 nodes in 3 dimensions, and 463,736 nodes in
4 dimensions.

For large-scale computing systems, the cost of the network is
often the major metric used for topology selection. As described by
Kim et al. in [5], the HyperX (or Flattened Butterfly) yields a 10%
higher cabling cost than Dragonfly with standard cabling techniques
using direct attached copper cables (DACs) and active optical cables
(AOCs). This is the major reason that the Dragonfly became the
state-of-the-art HPC topology from 2008 until now. Figure 3 shows
the costs of the Dragonfly relative to the HyperX for various system
sizes and various cable technologies. For this we calculated the
length of every cable in each of these networks based on common
physical dimensions and placement. When calculating every cable
the reproduction of the 2008 model, as described by Kim et al.,
shows that the Dragonfly has a 10% lower cost than the HyperX at
large scales.
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Figure 3: A cabling cost analysis comparing Dragonfly to Hy-
perX with various system sizes and cable technologies.

Link-level technologies are currently on the brink of change.
The major contribution to this change is the decreased distance of
high-speed SerDes (serializer/deserializer) electrical signaling due
to power consumption overheads and signal integrity limitations
of high signaling rates. 2.5 GHz signaling reached 8 meters as de-
scribed by Kim et al. 10 GHz reached 5 meters and 25 GHz now
reaches 3 meters. It is expected that 50 GHz will reach 2 meters
and 100 GHz will only reach 1 meter. Co-located, co-packaged, and
fully integrated photonics are now being developed as a way to fully
embrace photonics in the network and overcome the distance and
power limitations of electrical signaling [13–17]. These technolo-
gies allow for the use of low-cost passive optical cables. Figure 3
also shows the cost comparison when using passive optical cables2.
With this technology, the HyperX is always lower or equal in cost
compared to the Dragonfly.

If the Dragonfly and HyperX are equal cost, then the selection
between the two comes completely down to performance and pack-
agibility. We performed a head-to-head analysis of application-level
performance comparing the Fat Tree, Dragonfly, and HyperX using
a 27-point stencil application model. This model represents many
workloads used in physics-based HPC applications and is fully de-
scribed in Section 6.2. Figure 4 outlines these results which show
that HyperX has higher overall performance than the Fat Tree and
Dragonfly. In these results the HyperX yields 25-38% reduction
in communication time. The performance increase of the HyperX
comes from its lower latency during collectives and its higher adap-
tive routing capability during the halo exchanges which yields higher
achievable throughput. With the HyperX’s better or equal cost and
higher performance, we focus our attention on developing the highest
performing implementable adaptive routing algorithms for HyperX.

HyperX is an good candidate topology for implementation of in-
cremental adaptive routing because its symmetric multi-dimensional
fully connected structure creates an environment where each di-
mension can be load-balanced individually. In contrast, the UGAL
algorithm running on a HyperX decides whether to perform zero
load-balancing or full load-balancing on all dimensions in a bipolar
fashion. It does this because it makes only one adaptive decision
solely at the source router. An incremental adaptive routing scheme
can load-balance the dimensions individually based on the condi-
tions of each particular dimensional plane. While HyperX is not as
2Based on 64-port routers and confidential quotes gathered from multiple vendors for
various passive optical cable technologies.

Figure 4: A topology performance (execution time) results using
a 27-stencil application traffic.

scalable as some other topologies, its primary benefit is its ability to
support fine-grained incremental adaptive routing. An incremental
adaptive routing algorithm that is considered fine-grained is one that
always allows packets to divert from the minimal path while only
increasing the total path length by one hop. Unlike source adap-
tive routing which forces a 2× increase in bandwidth consumption
and latency, a HyperX network with N dimensions can allow non-
minimal routes with as little as 1

N bandwidth and latency overhead
in the best case and still only 2× overhead in the worst case.

3.2 Irregular Workloads
Most of the prior routing algorithm work has applied synthetic global
traffic patterns where the injection process of all endpoints is acting
the same. However, nearly every high performance computing sys-
tem in use today provides a platform in which multiple applications
and tenants run simultaneously. Each job that runs on a system has
a different size and duration. This creates many scenarios where
localized congestion occurs but is not wide-spread enough to be
considered global congestion. For example, a small job might only
consume a few 10s of nodes but have very high bandwidth require-
ments between its nodes. A very large job might be running at the
same time and some of its traffic will need to cross the area in which
the small job resides.

Source adaptive routing would not be able to detect this distant
congestion and would send packets along the minimal path only to
run straight into the small job’s localized congestion causing unnec-
essary high packet latencies for both jobs. Because the algorithm
only adapts at the source router, it can not do anything about the con-
gestion that it discovers and the packets will incur increased latency.
Eventually back pressure will propagate back to the source router.
The algorithm would then see the congestion and decide to take a
global non-minimal route to avoid the congestion. This non-minimal
route will attempt to load balance the entire network which increases
the bandwidth consumption of those packets by 2×.

This behavior exemplifies the bipolar nature of many modern
low-diameter networks that employ non-minimal adaptive routing.
They achieve high throughput for load-balanced traffic but slight
imbalances will drop throughput below 50%. In contrast, an incre-
mental adaptive routing algorithm would send the packets along the
minimal path until they reach the location of the small job’s conges-
tion. For each packet the algorithm could then find a non-minimal
path around the congestion to get to the destination. If the congestion
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exists within only a single dimension of the network, a fine-grained
incremental adaptive routing algorithm would take a non-minimal
path around the congestion and only increase the path length by one
hop.

4 LIMITATIONS OF PRIOR WORK
4.1 Adaptive Clos (Clos-AD)
Flattened Butterfly topology [4] was proposed with the Adaptive
Clos (Clos-AD) routing algorithm which is similar to the UGAL
algorithm with three optimizations:

(1) The Clos-AD algorithm only chooses intermediate nodes
based on the least common ancestor methodology – ensuring
that the packet does not route away from a dimension that is
already aligned.

(2) At the source router the Clos-AD algorithm observes the
congestion state of all output ports according to the first op-
timization (i.e., unaligned output ports). Each output port
is assigned a weight following the UGAL algorithm (i.e.,
weight = congestion×hopcount) and the route with the least
weight is selected. If the chosen output port corresponds to a
non-minimal path, an intermediate node is randomly selected
that would use that output port and Valiant’s randomized
routing is used to traverse to the intermediate node and subse-
quently to the destination node.

(3) The Clos-AD algorithm relies on the use of sequential alloca-
tion where each input of a router makes the routing decision
sequentially.

Clos-AD’s dependence on sequential allocation makes it impractical
for high-radix router architectures since it requires excessive routing
delay to sequentially traverse all input port routing engines. The
result is either enormous underutilization of internal router datapaths
or extremely low clock frequencies. Since this work focuses only
on routing algorithms that are practically implementable in high-
radix routers, we present results for the Clos-AD algorithm without
sequential allocator.

4.2 Dimensionally Adaptive Load-balancing
Dimensionally Adaptive Load-balancing (DAL)[6] was proposed
for HyperX topology. It uses “derouting” where a deroute is defined
as a lateral move in a network that does not bring the packet closer
to or further from the destination. In DAL, each packet tracks which
dimensions it has derouted and only deroutes once per dimension.
If a packet deroutes in all dimensions it is then forced to minimally
route the rest of the path.

DAL’s deadlock avoidance mechanism uses escape paths [30]
which have major limitations for large-scale networks. Escape paths,
as originally defined, require the use of atomic queue allocation
where no two packets can share a queue at the same time. During
queue allocation the allocator must ensure that the downstream
queue is empty before allowing any packet to traverse towards the
queue. This ensures that a deadlock is always able to be alleviated.
For large-scale networks with long channel latencies, atomic queue
allocation causes severe link underutilization because the upstream
router is not notified that the queue is empty until the last credit
propagates upstream.

Further work on escape paths [31] found that some specialized
router architectures can be created that do not require atomic queue
allocation. However, escape paths without atomic queue allocation
can not be supported on modern high-radix router architectures (e.g.,
the fully buffered crossbar [2] and all hierarchical router architec-
tures such as the hierarchical crossbar [2], the Cray YARC [3], and
a network-within-a-network [32]). Escape paths are only feasible if
the architecture is a single monolithic datapath design (e.g., a mono-
lithic crossbar) and the architecture is purely input queued (e.g.,
credits for downstream space can be consumed at path selection
time). However, high-radix router architectures all have complex
datapaths where packets traverse an internal network to get to the
output port chosen during the routing phase. Making a high-radix
router architecture support escape paths is not fundamentally im-
possible, but it would require excessive resources and significant
architectural complexity.

The only way to practically implement DAL in a high-radix router
is to use atomic queue allocation; however, this reduces channel ef-
ficiency to one packet per VC per credit round-trip latency. The
DAL evaluations [6] did not show negative impact since the network
simulated had single cycle channel latencies. For the topology eval-
uated in this paper with realistic channel latencies and 8 VCs, the
maximum achievable throughput is 8% for single flit packets and
68% for randomly sized packets between 1 and 16 flits3. Because of
the limited performance of the DAL algorithm with realistic channel
latency, we do not present results for DAL in the evaluation.

5 PRACTICAL INCREMENTAL
ADAPTIVE ROUTING

In this section we present two new routing algorithms for HyperX.
These algorithms implement fine-grained incremental adaptive rout-
ing that can be implemented on high-radix router architectures. In
particular, incremental routing across the different dimensions are
proposed but leverages deadlock avoidance that does not require
escape paths, special modifications to packet formats, or router
microarchitectural features.

5.1 Dimensionally-ordered Weighted
Adaptive Routing (DimWAR)

Dimensionally-ordered Weighted Adaptive Routing (DimWAR) is a
light-weight routing algorithm that performs fine-grained incremen-
tal adaptive routing by moving through the network in dimension
order. It supports one deroute per dimension when needed. It uti-
lizes both restricted routes and resource classes requiring only two
resource classes (i.e., VCs) for deadlock avoidance. The DimWAR
algorithm follows these steps:

(1) Configure the routing algorithm with 2 resource classes (e.g.,
2 VCs). When taking a minimal hop use the first resource
class (e.g., VC 0) and use the second resource class (e.g., VC
1) for deroute hops.

(2) At each router, assess all valid outputs with their correspond-
ing remaining hop count and current detected congestion.
Only paths of the next ordered dimension to be traversed are

3The maximum throughput when using atomic queue allocation is: PktSize×NumV cs÷
CreditRoundTrip
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Figure 5: Virtual channel usage of DimWAR and OmniWAR.

valid. Deroute outputs are only valid in the current dimension
and if the current resource class is the first class (e.g., VC 0).

(3) For each output, compute a weight (e.g., congestion×hopcount)
that estimates latency to the destination. Choose the output
with the minimal weight (i.e., least estimated latency).

The deadlock avoidance scheme of DimWAR is shown by the
green path in Figure 5 and is similar to dateline routing in a torus
network. In a torus, dateline resource classes break the cyclic depen-
dencies in the structure of the network and the result is a virtual mesh
topology. A mesh network only needs a single VC when paired with
dimension order routing. Because the dimensions are traversed in
order, the two dateline resource classes get re-used for each dimen-
sion. This is the same scheme that is used in DimWAR except that
no natural cyclic dependency exists in HyperX. Instead, DimWAR
creates cyclic dependencies by allowing one deroute per dimension.
It uses two resource classes to break the dependencies in each di-
mension, then it is able to reuse those resource classes on every
subsequent dimension, which are traversed in order. Because of this
DimWAR requires only 2 resource classes regardless of the number
of dimensions of the network.

5.2 Omni-dimensional Weighted Adaptive
Routing (OmniWAR)

Omni-dimensional Weighted Adaptive Routing (OmniWAR) is a
heavy-weight routing algorithm that performs fine-grained incre-
mental adaptive routing by moving through the network using any
unaligned (not yet resolved) dimension at any time. Deroutes do
not get tied to specific dimensions and dimensions do not need to
be resolved completely before traversing another dimension. The
algorithm is tunable to allow any number of deroutes across an entire

path, thus, the number of VCs given to OmniWAR determines how
much routing path diversity it is able to exploit. It utilizes distance
classes for deadlock avoidance. The OmniWAR algorithm follows
these steps:

(1) Configure the routing algorithm with N +M distance classes,
where N is the number of network dimensions, and M is the
number of allowed deroutes. On the first internal network hop
(i.e., router-to-router), use the first distance class (e.g., VC 0).
For each subsequent hop, use the next ordered distance class
(e.g., VCout =VCin +1).

(2) At each router, determine if derouting is currently allowed for
this packet by comparing the number of remaining minimal
hops to the destination and the number of remaining distance
classes available. If the difference is zero derouting is not
allowed, otherwise any deroute can be taken.

(3) Assess all valid outputs with their corresponding remaining
hop count and current detected congestion. Only paths of
currently unaligned dimensions are valid. Deroute outputs
are only valid when it has been determined that derouting is
allowed per the prior step.

(4) For each output, compute a weight (e.g., congestion×hopcount)
that estimates latency to the destination. Choose the output
with the minimal weight (i.e., least estimated latency).

The blue path in Figure 5 shows the deadlock avoidance scheme of
OmniWAR. When configured with 2N VCs, OmniWAR can deroute
the same number of times as the number of dimensions. However,
OmniWAR can be tuned down to save VCs if the expected traffic
does not create congestion in all dimensions. OmniWAR does not
require that deroutes be taken once per dimension. Instead, there are
M deroutes that can be taken at any time regardless of the history of
the packet. While the example path shows two non-minimal hops
then two minimal hops, many other combinations exist.

An optimization of OmniWAR is to restrict back-to-back deroutes
on the same dimension. This is an easy modification to the routing
algorithm as it is a simple function of the input port taken and the
candidate output ports. This optimization still allows back-to-back
deroutes, and more than one deroute per dimension, but it restricts
the combination thereof.

5.3 Comparison
DimWAR has less path diversity than OmniWAR because it uti-
lizes the restricted routes methodology of dimensional ordering to
provide deadlock avoidance. It does this to reduce the number of
VCs required for operation (i.e., 2 VCs regardless of the number
of dimensions). For HyperX configurations with more than 2 di-
mensions there are particular traffic patterns, albeit very maliciously
architected, where DimWAR will achieve much less throughput than
OmniWAR because of this limitation (described in Section 6.1).
For HyperX configurations with 1 or 2 dimensions, both algorithms
should achieve 100% throughput for benign traffic (i.e., already load-
balanced) and 50% throughput for worst case traffic (assuming the
bisection capacity of the network is 50%). When configured with 2N
VCs, OmniWAR theoretically achieves these throughputs regardless
of the number of dimensions.

Figure 5 shows potential paths taken by DimWAR and Omni-
WAR. Because DimWAR moves in dimension order, after seeing



Practical and Efficient Incremental Adaptive Routing for
HyperX Networks SC ’19, November 17–22, 2019, Denver, CO, USA

Table 1: Adaptive routing implementation comparison
(RR: restricted routes, RC: resource classes, DC: distance classes, N: number of dimensions).

Algorithm Dimension Routing VCs Deadlock Architecture Packet
Ordered Style Required Handling Requirements Contents

UGAL yes source 2 R.R. & R.C. none int. addr.
Clos-AD yes source 2 R.R. & R.C. seq. alloc. int. addr.

DAL no incremental 1+1e escape paths escape paths N-bit field
DimWAR yes incremental 2 R.R. & R.C. none none

OmniWAR no incremental N+M R.R. & D.C. none none

congestion between routers 0-0 and 0-2, it chooses to take a deroute
which it must do in the X-dimension. After it gets to router 0-3 it
uses minimal routing to get to 0-2. In contrast, OmniWAR is able to
traverse the network in any dimension order. Its two first minimal
options from 0-0 would be 0-2 and 2-0, however seeing congestion
on both of those it decides to deroute to 3-0. After another deroute
from 3-0 to 3-3, it has run out of its ability to take further deroutes
and may only choose minimal routes to the destination.

5.4 Implementation (Complexity) Analysis
In this section we compare the practicality of implementing adaptive
routing algorithms using modern high-radix routers. Large-scale
chip-to-chip networks have additional difficulty in implementing
adaptive routing algorithms, when compared to networks-on-chip
(NOCs) [33], because they often adhere to standards-based protocols
which govern the structure and format of packets. These protocols,
such as Ethernet [34], Fibre Channel [35], InfiniBand [36], and Gen-
Z [37] are designed to be topology and routing algorithm agnostic.
As such, the packet formats defined do not contain fields for the
routing algorithm to use. As shown in Table 1, UGAL, Clos-AD,
and DAL all require special fields to be placed and tracked inside
each packet. This is one explanation for why large-scale network
protocols have been so slow to adopt non-minimal adaptive routing
and have heavily adopted deterministic routing algorithms where the
route is a simple table lookup based on the destination address.

The architectural infeasibility of sequential allocator in Clos-AD
(Section 4.1) and limitation of DAL from escape paths (Section 4.2)
were discussed earlier. In comparison to the above, both DimWAR
and OmniWAR do not require additional information stored within
the packet as all routing information needed by these algorithms is
encoded into the VC identifier. These algorithms do not require any
special router architecture or architectural features. These algorithms
are implementable in common table-based routing architectures that
support virtual channel flow control.

For large-scale systems the routing algorithm does not signifi-
cantly affect network power consumption as the power is dominated
by constant power SerDes-based I/Os. Energy can be reduced by
achieving higher link utilization (and thus, higher performance) and
allowing applications to complete sooner. When using routing ta-
bles to implement routing algorithms, the silicon area overhead is
proportional to the routing table size (both in depth and width).
Non-deterministic (e.g., random oblivious and adaptive) routing al-
gorithms require wider tables based on the number of options given
to each entry. Advanced routing architectures (e.g., Cray Aries [38],
Gen-Z [37]) have size optimized tables where the area and power

overhead of the tables is negligible because the depth of the tables is
greatly reduced. DimWAR and OmniWAR have no significant differ-
ence in power and area overhead when compared to other adaptive
routing algorithms.

6 EXPERIMENTATION RESULTS
In this section we present experimentation results of cycle-accurate
simulations using the SuperSim interconnection network simulator
[39]. We simulate a 4,096 node 3D HyperX where each dimension
is 8 wide (i.e., 8x8x8) and each router connects to 8 terminals. All
routing algorithms are given 8 VCs and algorithms that require less
than 8 VCs for deadlock avoidance use the spare VCs for head-of-
line blocking reduction [18]4. We simulate a combined input and
output queued [40] router architecture with sufficient speedup to
ensure the internal router datapath is not a bottleneck. The router
crossbar latency is 50ns and we use age-based arbitration [20] for
both virtual channel and crossbar scheduling. The network uses
packet buffer flow control [18]. Router-to-router channels are 10
meters (50ns) and router-to-terminal channels are 1 meter (5 ns). We
supply enough buffering in the routers to cover more than the credit
round trip but not too much to prohibit stiff congestion back-pressure.
The routing algorithms evaluated are described in Table 2.5

Table 2: Adaptive routing algorithms evaluated.

Name Description
DOR Dimension Order Routing [21]
VAL Valiant’s Randomized Routing [28]
UGAL Universal Global Adaptive Load-balancing [11]
Clos-AD Universal Global Adaptive Load-balancing opti-

mized for HyperX [4]
DimWAR Dimensionally-ordered Weighted Adaptive

Routing (Section 5.1)
OmniWAR Omni-dimensional Weighted Adaptive Routing

(Section 5.2)

4We view this as the proper methodology for performance comparison since giving each
routing algorithm its exact number of VCs yields an unfair advantage to the algorithms
with higher VC requirements.
5Sequential allocation [4] can be used in any adaptive routing algorithm to improve
transient response. Due to its infeasible implementation complexity and to provide
fair comparison, sequential allocation was not used by any routing algorithm in the
evaluation.
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6.1 Synthetic Traffic
In this section we simulate steady state synthetic traffic patterns with
packets randomly sized from 1 to 16 flits. Before any measurements
are taken, the network is warmed up with traffic until packet latency
stabilizes. Packet injection continues until all measurements have
completed. If the network never reaches a state where latency sta-
bilizes (i.e., stops growing), the network is declared saturated and
measurements are not taken. This methodology is useful for under-
standing the raw performance of routing algorithms. Each traffic
pattern pinpoints a particular strength or weakness for the topology
and routing algorithm. The traffic patterns evaluated in this section
are described in Table 3.

Table 3: Synthetic traffic patterns used for steady state perfor-
mance analysis.

Name Description
UR Uniform Random
BC Bit Complement
URB Uniform Random Bisection - destination selected us-

ing BC in the targeted dimension and UR in all other
dimensions. This traffic results in one dimension being
non-load-balanced and all other dimensions are load-
balanced. For example, URBy has UR in the X and Z
dimensions and BC in the Y dimension.

S2 Swap 2 - destination selected like adversarial BC-like
way but only along one dimension. Even numbered
terminals use the X dimension and odd numbered ter-
minals use the Y dimension. This presents non-load-
balanced traffic but there is a lot of unused bandwidth
in total.

DCR Dimension Complement Reverse - destination selected
across the furthest dimensional instance of the network.
All terminals in each X dimension instance distribute
their traffic across a complement Z dimension instance.
Worst-case admissible traffic for 3D.

Figure 6 shows performance results for the synthetic traffic. Fig-
ure 6a shows UR traffic where all adaptive routing algorithms do
a good job choosing the minimal routes. OmniWAR does slightly
better than the rest because its underlying minimal algorithm is like
minimal adaptive (MIN-AD) routing that traverses dimensions in
any order increasing the minimal path diversity. The bit comple-
ment traffic shown in Figure 6b behaves as expected. The adaptive
routing algorithms all take the minimal path until the bisections of
each dimension become saturated at 12.5% injection at the point
the adaptive algorithms sense the congestion and take non-minimal
routes. The adaptive algorithms experience higher intermediate la-
tency when choosing non-minimal routes due to longer traversed
paths and overcoming queuing delays associated with the backpres-
sure of the minimal routes. All adaptive algorithms achieve near 50%
throughput, however, DimWAR and OmniWAR have lower latency
and higher throughput than UGAL and Clos-AD.

Figure 6c shows the results for when the first dimension is un-
balanced and the other two dimensions are balanced. Since the

congestion is experienced at the source router, all the adaptive algo-
rithms do well and achieve close to 50% injection. However, Figure
6d shows the case where the second dimension is unbalanced and
the first and third dimensions are balanced. In this case the source
adaptive algorithms (i.e., UGAL and Clos-AD) are unable to de-
tect the congestion at the source router and do no better than DOR
achieving only 12.5% throughput. In contrast, DimWAR and Omni-
WAR, being incremental algorithms, are able to move around the
congestion in the second dimension and continue on to achieve full
50% throughput.

Figure 6e shows the results for the swap2 traffic pattern which
leaves a lot of unused bandwidth in the network. UGAL, being
topology agnostic, sees a little bit of congestion and decides to fully
behave like VAL achieving only 50%. UGAL+, being tailored for
HyperX, is able to use much of the unused bandwidth and achieve
mostly full throughput. DimWAR and OmniWAR, being fully tai-
lored to HyperX and being incremental algorithms, achieve 100%
throughput.

Figure 6f shows the results for the worst admissible traffic pattern
for a 3D HyperX. DOR does not even show up because it creates a
64:1 oversubscription of a single link causing it to only achieve the
theoretical 1.56% ( 1

64 ) throughput. DimWAR does poorly because
it is forced to traverse the network in dimension order. UGAL and
UGAL+ do slightly better than DimWAR but still fail to achieve
the theoretical 50% performance. This is because the bottleneck
in this traffic pattern is not always witnessed at the source router.
OmniWAR being able to exploit all the path diversity of HyperX is
able to achieve the full theoretical 50% throughput.

Figure 6g shows the throughput side-by-side for all traffic patterns.
As shown, OmniWAR is always the top performer and DimWAR is
nearly always a close second place. The only time where this is not
the case is the DCR traffic pattern.

6.2 27-Point Stencil Traffic
While synthetic traffic patterns provide excellent stress tests for
steady state performance, they have two downfalls. First, they do
not stress a routing algorithm’s ability to adapt to changing network
conditions. Second, they are not representative of real application
workloads. To overcome these two limitations, we use an application
model of a stencil discretization in SuperSim. In a stencil discretiza-
tion, a simulated 3D physical space is split into sub-cubes as shown
in Figure 7a. Each sub-cube performs a portion of the simulation via
coordinating with the others. The following pseudo-code shows the
basic operation of each sub-cube:

f o r ( i n t i = 0 ; i < i t e r s ; i ++) {
compute ( ) ;
exchange ( ) ;
c o l l e c t i v e ( ) ;

}

Since computation is not modeled in SuperSim, the “compute()”
is a delay injected into the simulator’s execution that skips over
modeled time. The “exchange()” is a representation of the stencil
discretization. It is driven by a user specified traffic matrix that
specifies each node’s exchange with other nodes. In our simulations,
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(a) Uniform random (UR) (b) Bit complement (BC)

(c) Uniform random bisection: X-dimension (URBx) (d) Uniform random bisection: Y-dimension (URBy)

(e) Swap 2 (S2) (f) Dimension complement reverse (DCR)

(g) Throughput comparison (higher is better)

Figure 6: Simulated performance results for synthetic traffic patterns on a 4,096 node 3D HyperX comparing various routing algo-
rithms. Simulations were performed with a 2% injection rate granularity. Plots (a) through (f) are load versus latency plots in which
each line stops where the network becomes saturated. Plot (g) is a comparison chart comparing all traffic patterns and each routing
algorithm’s total achieved throughput.
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(a) Discretization into sub-cubes.
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(c) Dissemination collective algorithm.

Figure 7: 27-point stencil application model.

we use a 27-point stencil discretization in which nodes have 26 total
neighbors as shown in Figure 7b.

The “collective()” is a representation of a global synchronizing
communication in which all nodes interchange information. The
most common use of this is MPI_AllReduce in which each node
contributes a value and all nodes complete the collective operation
by understanding the reduced value of all values (e.g., minimum,
maximum, etc.). The collective algorithm implemented in SuperSim
uses a dissemination algorithm [41] as shown in Figure 7c. The
dissemination algorithm is an iterative process where each node
sends and receives log2N messages. This algorithm is very similar
to recursive doubling [42] except that it is topology agnostic. In the

dissemination algorithm, each node sends and receives with ID+1
and ID-1, then ID+2 and ID-2, then ID+4 and ID-4, and so on.

Our purpose for choosing this model of the 27-point stencil dis-
cretization is to cover the two previously identified flaws of steady
state synthetic workloads. First, this stencil model is realistic for
many physics-based HPC applications. Second, the traffic of this
stencil application creates an extremely stressful workload for cost-
optimized low-diameter networks (e.g., HyperX, Dragonfly, etc.) that
rely on non-minimal adaptive routing. The exchange phase creates
hot spots in the network that benefit from non-minimal routing. The
collective phase on the other hand is highly latency sensitive which
ideally uses only minimal routes. Because the stencil workload fre-
quently switches between exchange and collective, adaptive routing
algorithms need to quickly adapt to changing network conditions.

In our simulations we turn the compute time to zero, then test
a single iteration as well as 16 iterations. With a single iteration,
the communication is unencumbered by past traffic. This is rep-
resentative of applications where the communication phases are
significantly spread out by computation phases. With 16 iterations
the communication phases are blended together as much as the
collective’s synchronization will allow. This traffic is representa-
tive of applications that overlap communication and computation
to the point where the communication phases execute back-to-back.
Processes are randomly assigned to nodes.

Figure 8 shows the results where each node sends an aggregate
of 100kB across its 26 neighbors for each halo exchange. This
simulation uses a random placement policy to assign stencil sub-
cubes to network endpoints. Bars measure execution time, thus,
smaller bars indicate higher performance. Figure 8a shows the results
for only collectives. As shown, all routing algorithms except VAL
have good performance. All adaptive algorithms consistently choose
the minimal paths because the network remains unloaded.

In comparison, halo exchanges are highly bandwidth bound requir-
ing frequent non-minimal routing, the various adaptive algorithms
perform differently (Figure 8b). The incremental nature of both
DimWAR and OmniWAR allows them to achieve the highest perfor-
mance. Notice that DOR does the worst but VAL is second worst.
From this we can deduce that neither minimal nor non-minimal
routing is the ideal strategy. The adaptive algorithms are able to
outperform these oblivious algorithms by using non-minimal routes
only when required. Adaptive algorithms can hurt performance by
being too eager for minimal routing or non-minimal routing. Dim-
WAR and OmniWAR are able maintain excellent performance by
striking a better balance.

Figure 8c shows the results for the full application where halo
exchanges and collectives are both used iteratively. Because of their
excellent halo exchange performance, DimWAR and OmniWAR
still perform the best with OmniWAR slightly beating DimWAR’s
performance. An adaptive routing algorithm that is slow to react to
the change between halo exchange and collective will cause poor
performance. All 4 adaptive routing algorithms have been tuned
to react quickly to change. The performance increase in DimWAR
and OmniWAR is caused by their better balancing of minimal and
non-minimal routing strategies. 100kB is a small halo exchange
size for many applications. We use this small size to create a highly
stressful and dynamic workload. Applications that use halo exchange
sizes much larger than this should expect the relative performance
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(a) Collective performance

(b) Halo exchange performance

(c) Halo exchange and collectives performance

Figure 8: Simulation results for the 27-point stencil discretiza-
tion model using 100kB per node per halo exchange. Lower is
better.

of Figure 8b because larger halo exchanges make the collectives
become less significant to total execution time of each iteration.

7 CONCLUSION
In this work we have shown that incremental adaptive routing is es-
sential to exploit the potential performance of the HyperX topology.

We have presented two new incremental adaptive routing algorithms
(DimWAR and OmniWAR) which achieve up to 4× the throughput
of state-of-the-art routing algorithms on synthetic traffic and reduce
communication time by up to 25% for 27-point stencil discretization
workloads. The light-weight DimWAR algorithm exploits most of
the path diversity of HyperX and the heavy-weight OmniWAR algo-
rithm exploits all of it allowing it to consistently achieve the highest
performance across all workloads. Both DimWAR and OmniWAR
are implementable in any network protocol that supports virtual
channel flow control. Unlike all prior adaptive routing algorithms for
HyperX, DimWAR and OmniWAR require no modification of the
packet format and require no special router architectural features.
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