
High Performance
Service Oriented

Computing
Nic McDonald

Stanford CVA Research Lab



Motivation: Service Oriented Computing

2

Viewer Mem
Cache

ADs User
DB

Post
DBEditor



Motivation: Twitter

3



Motivation: Hailo

4



Motivation: High Performance Interconnects

5

“Lower latency will simplify application development, increase web application 
scalability,  and  enable  new  kinds  of  data-intensive  applications  that  are  
not possible today.”

Rumble, Ongaro, Stutsman, Rosenblum, and Ousterhout.
“It’s time for low latency” in HotOS, vol. 13, 2011, pp. 11–11.



Motivation: High Performance Interconnects

6

“Lower latency will simplify application development, increase web application 
scalability,  and  enable  new  kinds  of  data-intensive  applications  that  are  
not possible today.”

Rumble, Ongaro, Stutsman, Rosenblum, and Ousterhout.
“It’s time for low latency” in HotOS, vol. 13, 2011, pp. 11–11.



Motivation: High Performance Interconnects

7

“Lower latency will simplify application development, increase web application 
scalability,  and  enable  new  kinds  of  data-intensive  applications  that  are  
not possible today.”

Rumble, Ongaro, Stutsman, Rosenblum, and Ousterhout.
“It’s time for low latency” in HotOS, vol. 13, 2011, pp. 11–11.



Motivation: Access Control Lists (N-ACL)

8

Protocol Source Destination

Address Port Address Port

TCP 192.168.1.3 54321 10.0.2.10 123

TCP 192.168.1.3 43215 10.0.2.10 456

TCP 192.168.1.3 43215 10.0.3.10 456



Motivation: Access Control Lists (S-ACL)

9

Source Destination

Service Service Processes Domains

Timeline Service Redis 6, 17, 32 Get, Set



10

Motivation: Service Oriented Rate Control

Viewer Mem
Cache

ADs User
DB

Post
DBEditor

25 Gbps

75 Gbps



11

Motivation: Service Oriented Rate Control

Proc
C

Proc
B

Proc
A

Proc
E

Proc
F

Proc
D

Service 1 Service 2

Network



12

Motivation: Service Oriented Rate Control

Proc
C

Proc
B

Proc
A

Proc
E

Proc
F

Proc
D

Service 1 Service 2

Network



Service Oriented Application Model

13



Sikker: Service Oriented Application Model

14

AppApp App

SvcSvc SvcSvcSvc



Sikker: Service Oriented Application Model

15

DomProc

Svc

Proc Dom Dom

◎ Applications
○ Services

◉ Processes
◉ Domains

Process = execution unit (e.g., process, container, VM)
Domain = service-specific permission domain



Sikker: Service Oriented Application Model

16

Bill KVS

John Mendel

GillAl



Sikker: Service Oriented Application Model

17

Table Key Value

Mammals pet dog

Engineering department Electrical

Locations school California

Companies internship Google

Sports best wakeboarding

Engineering tool oscilloscope

Sports boring baseball

Locations born Utah

Mammals fastest cheetah

Companies career HPE
API Commands: Get, Set, Delete

Bill KVS

John Mendel

GillAl



Sikker: Service Oriented Application Model

18

Sikker

Proc

Proc

NOS

Proc

Proc

Proc

Proc



Sikker: Service Oriented Application Model

19

Sikker

Proc

Proc

NOS

Proc

Proc

Proc

Proc

tx_message:
  dst: [KVS, 27, MammalsSet]
  payload: “pet=cat”

Service: Bill
Process: 101

Service: Kvs
Process: 27



Sikker: Service Oriented Application Model

20

Sikker

Proc

Proc

NOS

Proc

Proc

Proc

Proc

tx_message:
  dst: [KVS, 27, MammalsSet]
  payload: “pet=cat”

rx_message:
  src: [Bill, 101]
  dst: [KVS, 27, MammalsSet]
  payload: “pet=cat”

Service: Bill
Process: 101

Service: Kvs
Process: 27

✓



Sikker: Service Oriented Application Model

21

Sikker

Proc

Proc

NOS

Proc

Proc

Proc

Proc

tx_message:
  dst: [KVS, 27, MammalsSet]
  payload: “pet=cat”

rx_message:
  src: [Bill, 101]
  dst: [KVS, 27, MammalsSet]
  payload: “pet=cat”

Service: Bill
Process: 101

Service: Kvs
Process: 27

✓

Service: John
Process: 72

tx_message:
  dst: [KVS, 27, MammalsSet]
  payload: “pet=fish”



Sikker: Service Oriented Application Model

22

Sikker

Proc

Proc

NOS

Proc

Proc

Proc

Proc

Trusted
operating 
system

Source added to 
each message

Able to derive identities

Trusted
interconnect

Messages only 
delivered to specified 

destination

✓



Sikker: Service Oriented Rate Control

23

Bill KVS

John Mendel

GillAl

35 Gbps

10 Gbps

15 Gbps

25 Gbps
15 Gbps



Sikker: Scalability

24

E = A * R
Resources being accessed 
by each agent

Number of agents

Total number of ACL entries



Sikker: Scalability

25

E = A * R

N
NACL 

= s
t
p
s
 * s

a
p
a
d
a

N
SACL

 = s
t
 * s

a
(p

a
+d

a
)

LEGEND:

s
t
= Total Services

p
s
= Processes per Service

s
a
= Accessible Services

p
a
= Accessible Processes

d
a
= Accessible Domains

p
h
= Processes per host



Sikker: Scalability

26

E = A * R

N
NACL 

= s
t
p
s
 * s

a
p
a
d
a

N
SACL

 = s
t
 * s

a
(p

a
+d

a
)

H
NACL

 = p
h
 * s

a
p
a
d
a

H
SACL

 = p
h
 * s

a
(p

a
+d

a
)

LEGEND:

s
t
= Total Services

p
s
= Processes per Service

s
a
= Accessible Services

p
a
= Accessible Processes

d
a
= Accessible Domains

p
h
= Processes per host



Sikker: Connectivity Model

27

Processes per NMU (per host) 16

Processes per Service 512

Domains per Service 256

Service coverage 20%

Process coverage 65%

Domain coverage 25%

H1

S1:P1

S1

S1:D2

S1:D1

S3:P1

H2

S2:P1

S2

S3:P2

S2:D1

H4

S3:D2

S3

S3:D1
S3:P3

H5

H3

S1:P2

S1:D3



Sikker: Connectivity Model

28

Processes per NMU (per host) 16

Processes per Service 512

Domains per Service 256

Service coverage 20%

Process coverage 65%

Domain coverage 25%

H1

S1:P1

S1

S1:D2

S1:D1

S3:P1

H2

S2:P1

S2

S3:P2

S2:D1

H4

S3:D2

S3

S3:D1
S3:P3

H5

H3

S1:P2

S1:D3

If there are 217 (i.e. 131,072) hosts then:

# of total Processes 131,072 * 16 = 2,097,152

# of Services 131,072 / 512 = 4,096

Service connections 4,096 * 0.20 = 819

Processes per connection 512 * 0.65 = 333

Domains per connection 256 * 0.25 = 64



Sikker: Scalability

29



Sikker: Scalability

30
146 TB vs. 5.33 GB

System State



Sikker: Scalability

31
146 TB vs. 5.33 GB 1.12 GB vs. 20.8 MB

System State Host State



High Performance Access Control

32



The workhorse of Sikker is a new network interface controller (NIC) 
architecture called, the Network Management Unit (NMU)

NMU: Architecture

33

Host

Network

NOS

N
M

U

N
M

U
N

M
U

N
M

U

Proc Proc

Proc

Host

Proc Proc

Proc

Host

Proc Proc

Proc

Host

Proc Proc

Proc



NMU: Architecture

34

To NetTo CPU
Processor 

Interconnect 
Controller

Network 
Access 

Controller

Security Logic

HashMap 
Controller

Dynamic 
Memory 
Allocator

Memory System

The NMU architecture is a data 
structure accelerator specifically 
for managing nested hashmaps.



NMU: Latency Results

35

Memory System:
◎ L1 cache: 8-way 32 kiB
◎ L2 cache: 16-way 4 MiB
◎ DRAM: ~100MiB

32nm process technology
DDR3-1600 technology



NMU: Bandwidth Results

36

A single NMU logic engine:

*average packet size in a data center is 850 bytes (Microsoft’s claim)

*average packet size in a data center is 200 bytes (Facebook study)

8 logic engines @ 90%:
138-176 Mcps (over 1 Tbps on 850 byte packets)

UR GRR

Permission checks per second 19.23 Mcps 24.39 Mcps

Bandwidth (850 byte packets)* 130.77 Gbps 165.85 Gbps

Bandwidth (200 byte packets)* 30.77 Gbps 39.02 Gbps



High Performance Rate Control

37



Rate Control

38

Viewer Mem
Cache

ADs User
DB

Post
DBEditor

25 Gbps

75 Gbps



Rate Control: Sender Enforced - 
Token and Rate Exchange (SE-TRE)

39

Proc
C

Proc
B

Proc
A

Proc
E

Proc
F

Proc
D

Service 1 Service 2

Network



Rate Control: Sender Enforced - 
Token and Rate Exchange (SE-TRE)

40

Proc
C

Proc
B

Proc
A

Proc
E

Proc
F

Proc
D

Service 1 Service 2

Network

Token and 
Rate 

Exchange 
Protocol



Rate Control: Results

Zero latency 
overhead at the 

99.99th percentile

41



Rate Control: Results

Zero latency 
overhead at the 

99.99th percentile

42

0.3% bandwidth 
overhead @ 25 kHz



Related Work

43



Related Work

Super Computing (e.g., Cray, IBM, Mellanox):
● Partitioning
● Security with no isolation (e.g., Infiniband keys)

44



Related Work

Super Computing (e.g., Cray, IBM, Mellanox):
● Partitioning
● Security with no isolation (e.g., Infiniband keys)

Cloud Computing (e.g., AWS, GCE, Azure):
● Partitioning (e.g., VLAN, VXLAN, NVGRE)
● Bridging (e.g., OpenStack Neutron, VMware NSX)
● Security with no isolation (e.g., SSL)

45



Related Work

Super Computing (e.g., Cray, IBM, Mellanox):
● Partitioning
● Security with no isolation (e.g., Infiniband keys)

Cloud Computing (e.g., AWS, GCE, Azure):
● Partitioning (e.g., VLAN, VXLAN, NVGRE)
● Bridging (e.g., OpenStack Neutron, VMware NSX)
● Security with no isolation (e.g., SSL)

Enterprise Computing (e.g., Facebook, State Farm, Chase):
● Security model similar to S.C., technology of C.C.

46



Related Work

Super Computing (e.g., Cray, IBM, Mellanox):
● Partitioning
● Security with no isolation (e.g., Infiniband keys)

Cloud Computing (e.g., AWS, GCE, Azure):
● Partitioning (e.g., VLAN, VXLAN, NVGRE)
● Bridging (e.g., OpenStack Neutron, VMware NSX)
● Security with no isolation (e.g., SSL)

Enterprise Computing (e.g., Facebook, State Farm, Chase):
● Security model similar to S.C., technology of C.C.

47

No system meets 
the full security and 
isolation needs of 

the application



Conclusion

48



Conclusion

49

DP

S

P D D

146 TB vs. 5.33 GB

1.12 GB vs. 20.8 MB

System State

Host State
SACLs

Captures all the 
interactivity requirements 

of the application.



Conclusion

50

To 
NetTo CPU

Processor 
Interconnect 

Controller

Network 
Access 

Controller

Security Logic

HashMap 
Controller

Dynamic 
Memory 
Allocator

Memory System

~50ns
100s Gbps

DP

S

P D D

146 TB vs. 5.33 GB

1.12 GB vs. 20.8 MB

System State

Host State
SACLs

Captures all the 
interactivity requirements 

of the application.



Service 2Service 1

Conclusion

51

To 
NetTo CPU

Processor 
Interconnect 

Controller

Network 
Access 

Controller

Security Logic

HashMap 
Controller

Dynamic 
Memory 
Allocator

Memory System

~50ns
100s Gbps

P

P

P

P

P

P

Network

Zero @ 99.99th

0.3%  bandwidth

DP

S

P D D

146 TB vs. 5.33 GB

1.12 GB vs. 20.8 MB

System State

Host State
SACLs

Captures all the 
interactivity requirements 

of the application.



Service 2Service 1

DP

S

P D D

Conclusion

52

146 TB vs. 5.33 GB

1.12 GB vs. 20.8 MB

System State

Host State

To 
NetTo CPU

Processor 
Interconnect 

Controller

Network 
Access 

Controller

Security Logic

HashMap 
Controller

Dynamic 
Memory 
Allocator

Memory System

~50ns
100s Gbps

P

P

P

P

P

P

Network

Zero @ 99.99th

0.3%  bandwidth

Zero CPU 
Overhead

SACLs

Captures all the 
interactivity requirements 

of the application.



Thank You!

53



CPU Overheads in Cloud Computing

54

NetBurst
@ 1 Gbps

Nehalem
@ 10 Gbps

Haswell
@ 25 Gbps

Skylake
@ 50 Gbps

*study by Broadcom



NMU: Architecture

55

NMU

0x00  =  C:7

0x01

0x02  =  A:0

0x03  =  B:4

0x04  =  A:3

0x05

0x06

0x07

A:0

0x12340000

C:7

0x12340000

A:3

0x12340000

B:4

0x12340000

MMU

0xC0002000

0xC0000000

0xC0004000

0xC0003000

Virtual
Addresses

Physical
Addresses

“LocalIndex”



NMU: Security Analysis

The NMU completely implements the Sikker security and isolation policy. In the 
presence of an exploited host OS, the NMU provides increased security compared 
to modern systems.

56

Host

Host

Host

Host

Network

NOS

P

P
N

M
U

P

P

P

N
M

U

P

P

P

N
M

U P

P

P

N
M

U


