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Motivation: High Performance Interconnects
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“Lower latency will simplify application development, increase web application 
scalability,  and  enable  new  kinds  of  data-intensive  applications  that  are  
not possible today.”

Rumble, Ongaro, Stutsman, Rosenblum, and Ousterhout.
“It’s time for low latency” in HotOS, vol. 13, 2011, pp. 11–11.
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Motivation: Access Control Lists (N-ACL)

8

Protocol Source Destination

Address Port Address Port

TCP 192.168.1.3 54321 10.0.2.10 123

TCP 192.168.1.3 43215 10.0.2.10 456

TCP 192.168.1.3 43215 10.0.3.10 456



Motivation: Access Control Lists (S-ACL)

9

Source Destination

Service Service Processes Domains

Timeline Service Redis 6, 17, 32 Get, Set
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Motivation: Service Oriented Rate Control
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Motivation: Service Oriented Rate Control
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Sikker: Service Oriented Application Model
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Sikker: Service Oriented Application Model
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DomProc

Svc

Proc Dom Dom

◎ Applications
○ Services

◉ Processes
◉ Domains

Process = execution unit (e.g., process, container, VM)
Domain = service-specific permission domain
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Sikker: Service Oriented Application Model
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Table Key Value

Mammals pet dog

Engineering department Electrical

Locations school California

Companies internship Google

Sports best wakeboarding

Engineering tool oscilloscope

Sports boring baseball

Locations born Utah

Mammals fastest cheetah

Companies career HPE
API Commands: Get, Set, Delete

Bill KVS

John Mendel

GillAl
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Sikker: Service Oriented Application Model
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  dst: [KVS, 27, MammalsSet]
  payload: “pet=cat”

Service: Bill
Process: 101

Service: Kvs
Process: 27
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Sikker

Proc

Proc

NOS

Proc

Proc

Proc

Proc

tx_message:
  dst: [KVS, 27, MammalsSet]
  payload: “pet=cat”

rx_message:
  src: [Bill, 101]
  dst: [KVS, 27, MammalsSet]
  payload: “pet=cat”

Service: Bill
Process: 101

Service: Kvs
Process: 27

✓

Service: John
Process: 72

tx_message:
  dst: [KVS, 27, MammalsSet]
  payload: “pet=fish”



Sikker: Service Oriented Application Model
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Sikker

Proc

Proc

NOS

Proc

Proc

Proc

Proc

Trusted
operating 
system

Source added to 
each message

Able to derive identities

Trusted
interconnect

Messages only 
delivered to specified 

destination

✓



Sikker: Service Oriented Rate Control
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Sikker: Scalability
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E = A * R
Resources being accessed 
by each agent

Number of agents

Total number of ACL entries
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Sikker: Connectivity Model
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Processes per NMU (per host) 16

Processes per Service 512

Domains per Service 256

Service coverage 20%

Process coverage 65%

Domain coverage 25%
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Processes per NMU (per host) 16

Processes per Service 512

Domains per Service 256

Service coverage 20%

Process coverage 65%

Domain coverage 25%

H1

S1:P1

S1

S1:D2

S1:D1

S3:P1

H2

S2:P1

S2

S3:P2

S2:D1

H4

S3:D2

S3

S3:D1
S3:P3

H5

H3

S1:P2

S1:D3

If there are 217 (i.e. 131,072) hosts then:

# of total Processes 131,072 * 16 = 2,097,152

# of Services 131,072 / 512 = 4,096

Service connections 4,096 * 0.20 = 819

Processes per connection 512 * 0.65 = 333

Domains per connection 256 * 0.25 = 64
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Sikker: Scalability
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146 TB vs. 5.33 GB

System State
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31
146 TB vs. 5.33 GB 1.12 GB vs. 20.8 MB

System State Host State



High Performance Access Control
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The workhorse of Sikker is a new network interface controller (NIC) 
architecture called, the Network Management Unit (NMU)

NMU: Architecture
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NMU: Architecture

34

To NetTo CPU
Processor 

Interconnect 
Controller

Network 
Access 

Controller

Security Logic

HashMap 
Controller

Dynamic 
Memory 
Allocator

Memory System

The NMU architecture is a data 
structure accelerator specifically 
for managing nested hashmaps.



NMU: Latency Results
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Memory System:
◎ L1 cache: 8-way 32 kiB
◎ L2 cache: 16-way 4 MiB
◎ DRAM: ~100MiB

32nm process technology
DDR3-1600 technology



NMU: Bandwidth Results
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A single NMU logic engine:

*average packet size in a data center is 850 bytes (Microsoft’s claim)

*average packet size in a data center is 200 bytes (Facebook study)

8 logic engines @ 90%:
138-176 Mcps (over 1 Tbps on 850 byte packets)

UR GRR

Permission checks per second 19.23 Mcps 24.39 Mcps

Bandwidth (850 byte packets)* 130.77 Gbps 165.85 Gbps

Bandwidth (200 byte packets)* 30.77 Gbps 39.02 Gbps



High Performance Rate Control
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Rate Control
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Rate Control: Sender Enforced - 
Token and Rate Exchange (SE-TRE)
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Rate Control: Results

Zero latency 
overhead at the 

99.99th percentile
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Rate Control: Results

Zero latency 
overhead at the 
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0.3% bandwidth 
overhead @ 25 kHz
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Super Computing (e.g., Cray, IBM, Mellanox):
● Partitioning
● Security with no isolation (e.g., Infiniband keys)
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No system meets 
the full security and 
isolation needs of 

the application
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146 TB vs. 5.33 GB

1.12 GB vs. 20.8 MB

System State

Host State

To 
NetTo CPU

Processor 
Interconnect 

Controller

Network 
Access 

Controller

Security Logic

HashMap 
Controller

Dynamic 
Memory 
Allocator

Memory System

~50ns
100s Gbps

P

P

P

P

P

P

Network

Zero @ 99.99th

0.3%  bandwidth

Zero CPU 
Overhead

SACLs

Captures all the 
interactivity requirements 

of the application.



Thank You!
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CPU Overheads in Cloud Computing
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NetBurst
@ 1 Gbps

Nehalem
@ 10 Gbps

Haswell
@ 25 Gbps

Skylake
@ 50 Gbps

*study by Broadcom



NMU: Architecture
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NMU
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NMU: Security Analysis

The NMU completely implements the Sikker security and isolation policy. In the 
presence of an exploited host OS, the NMU provides increased security compared 
to modern systems.
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