Nicholas (Nic) McDonald

n.mcdonald83@gmail.com www.nicm.dev

Expertise:

I am a computer architecture research scientist and software/hardware engineer. I've designed systems of all sizes ranging from small embedded systems to exascale supercomputers. I'm currently a research scientist at Nvidia. Previously I worked at Google working on designing next generation high-performance network topologies, routing algorithms, transports, congestion control systems, and more. Before that I worked at Hewlett Packard Labs where I designed high-performance network ASICs, network protocols, adaptive routing algorithms, simulation infrastructures, and distributed system programming models. I've submitted over 20 patent applications as lead inventor.

Education:

Stanford University

- Ph.D. Electrical Engineering, 2016, GPA 3.90
 - o Advisor: William J. Dally

University of Utah

- M.S. Electrical and Computer Engineering, May 2012, GPA 3.85 o Advisor: Al Davis
- B.S. Computer Engineering, December 2010, GPA 3.81

Employment:

Nvidia - Senior Research Scientist 2021-present
Too early to tell :)
Google - Senior Software Engineer
 Developing next generation data center network topologies, routing algorithms, transport
protocols, congestion control systems, and switching architectures.
 Guiding the architecture of future accelerated network hardware and software systems.
Hewlett Packard Labs - Research Scientist
Developed architectures for next-generation HPC systems based on emerging technologies such
as photonics, non-volatile memories, memory-semantic network protocols, etc.
Designed the routing and congestion management architecture of the Gen-Z protocol to support
HPC systems with efficiency at extreme scales and high performance.
 Designed a hierarchical high-radix router architecture for use in next-generation HPC systems.
 Designed new routing algorithms to support fine-grained incremental adaptive routing.
Google - Network Research Intern 2014
 Designed, prototyped, and benchmarked next generation network topologies, congestion control
algorithms, and load balancing mechanisms.
 Developed a Python-based software package for interacting in parallel with numerous hosts with
focus on error tolerability and scripting productivity.
HP Labs - Research Associate 2013-2014, 2015
 Designed multiple microarchitectures for high-radix switches enabled by photonic I/Os with
emphasis on scalability of both monolithic and hierarchical switch designs.
Developed a cycle-accurate discrete event network simulator specializing in large network
simulations, flexible endpoint modeling, and alternative microarchitecture modeling.

- Developed digital processing architectures for encryption, networking, waveform data processing, and network synchronization.
- Designed systems with strict requirements for high-performance, low-power, and minimal area.
- All designs were meticulously scrutinized for high-reliability and signal integrity.

L-3 Communications - Systems Engineer 2008-2010

- Worked in systems engineering to support the Global Hawk UAV program.
- Designed digital test circuitry to aid product interfacing and testing.
- Developed acceptance test procedures for L-3 products.
- Performed many debugging investigations and tests for Global Hawk systems.

Publications:

"Practical and Efficient Incremental Adaptive Routing for HyperX Networks", The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC) 2019.

"SuperSim: Extensible Flit-Level Simulation of Large-Scale Interconnection Networks", The International Symposium on Performance Analysis of Systems and Software (ISPASS) 2018.

"High-Performance Service-Oriented Computing", Ph.D. dissertation, Stanford University, 2016.

Patents:

"Arbitrating Data Packets", US Patent 9,847,949

"Calculating Times to Live for Transaction Requests", US Patent 10,355,978 "Routing Packets Based on Congestion of Minimal and Non-Minimal Routes", US Patent 10,476,780 "Routing Packets in Dimensional Order in Multidimensional Networks", US Patent 10,374,943 20+ patents pending, filed 2016-2020

Open-Source Projects:

- SuperSim Extensible flit-level network simulation, <u>www.github.com/nicmcd/supersim</u> C++, 40k lines, 350 files
- libdes Parallel discrete event simulation framework, <u>www.github.com/nicmcd/libdes</u> C++, 5k lines, 42 files
- **TaskRun** Parallel task management and execution, <u>www.github.com/nicmcd/taskrun</u> Python, 6k lines, 44 files
- **ParaMgmt** Scriptable parallel server interaction, <u>www.github.com/google/paramgmt</u> Python, 1k lines, 3 files

Academic Research:

A Distributed System Architecture for Secure High Performance Computing (Ph.D. thesis)

- Developed a high performance distributed system architecture for modern large-scale applications that provides inherent network level isolation and security.
- Designed a network interface controller that supports this architecture by enforcing its policies efficiently in hardware and removing the need for complex software based solutions.

• Developed a custom logic simulator for the network interface controller and used it to show that it only increases message latency by 35-65 ns.

Accelerator Multi-Threading (Multi-Core Architecture Class Project)

- Developed a novel accelerator interface architecture for fine-grained system multi-threading.
- Implemented the design on a Xilinx Zynq platform and showed the dramatic benefits of hardware-based accelerator multi-threading versus software-based solutions.

Arbitration Structures for High-Radix Routers (M.S. Research Project)

- Implementation and investigation of the energy and delay scalability of parallel prefix arbitration structures for high-radix routers.
- Developed radix independent HDL and tested across multiple radices and technology libraries.

Attack on SSL and the Public Key Infrastructure (Network Security Class Project)

- Developed and implemented a system for covertly installing an evil certificate-authority (C.A.) in a victim's web browser.
- Developed software to reroute web traffic and use the evil C.A. to decrypt all transferred web data.

Precise Time Synchronization in 804.15.4 Wireless Networks (Communications Class Project)

• Developed digital hardware to precisely control time synchronization between nodes in an 802.15.4 wireless network.

Fly-by-wire System for an Autonomous Unmanned Helicopter (B.S. Senior Project)

- Developed a multi-processor system for sensor data acquisition, sensor fusion, and autonomous flight control using PID feedback.
- Created software for viewing and controlling the flight.

Tiny 32-bit RISC Architecture (Processor Design Class Project)

- Designed a programmer/compiler friendly instruction set architecture (I.S.A.).
- Created a fully featured assembler for machine code generation.
- Implemented and tested the processor design in an FPGA.
- Processor design includes a priority encoded interrupt system, variable sized instructions, SDRAM interface, and simple programming interface for precise hardware control.